
GAMMATRON TYPE 254

GENERAL PURPOSE TRIODE

Medium mu universal triode, 100 watt radiation cooled tantalum plate. Special design permits high voltage operation and unusual VHF efficiency.

PHYSICAL DATA

Plate Cylindrical Tantalum
Grid Braced Vertical Bar Tantalum
Filament Thoriated Tungsten
Net Weight 5 Ounces
Net Weight 6½ Ounces
Shipping Weight
Maximum Height
Maximum Diameter

ELECTRICAL DATA

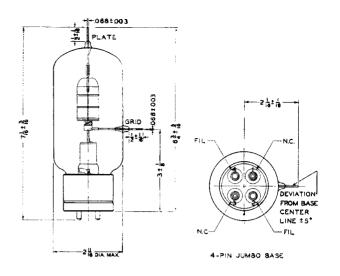
Filament Voltage			5.0 Volts
Filament Current			7.5 Amps
Normal Plate Dissipation			100 Watts
Maximum Average Plate Current			225 MA.
Maximum Average Grid Current			60 MA.
Maximum Plate Voltage			4000 Volts
Average Amplification Constant			25

INTERELECTRODE CAPACITANCES

Grid-Plate .					2.7 Mmfd.
Grid-Filament					2.5 Mmfd.
Plate-Filament					0.4 Mmfd.

The Type 254 GAMMATRON is capable of high voltage operation, long life, unusual VHF efficiency and has the ability to stand heavy over-loads. These results are achieved by the use of a tantalum grid and plate in combination with unique Heintz and Kaufman engineering developments.

The plate and grid are mounted on short, sturdy, low resistance leads. Internal insulators are not required while perfect alignment is maintained, thus the interelectrode capacity is low and the insulation high. A plate dome confines the electron stream within the plate, eliminating destructive bombardment of the envelope and plate seal and also improving the plate efficiency. These features combine to give exceptional VHF performance.


The grid seal is protected from failure at very severe VHF loads by means of a silver film. This patented device prevents electrolytic currents from decomposing the glass at the tungsten seal, and thus grid cracks sometimes experienced in ordinary tubes are eliminated.

The use of tantalum and the elimination of unnecessary internal structures makes it possible to exhaust GAMMA-TRON tubes at very high temperatures. This technique completely eliminates all of the internal gas, the usual "getter" is not necessary, and the tube cannot become soft even due to heavy overloads. The ability of tantalum to reabsorb gas even though operating at high temperatures insures an excellent vacuum permanently, and long filament life.

4M 2-46

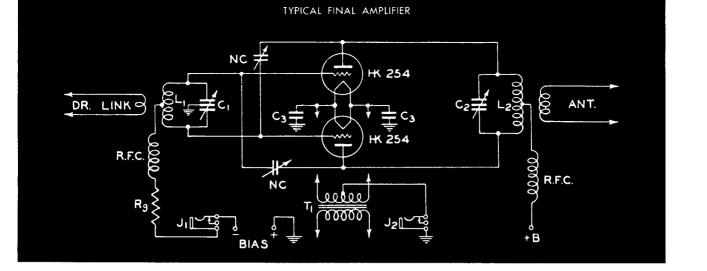
TYPE HK 254

The information on this and the following page does not represent exact conditions of operation to be imposed for any particular situation. Because tubes are used under many widely different conditions Heintz and Kaufman will gladly furnish information for applications which differ appreciably from the illustrative examples given.

RADIO FREQUENCY POWER AMPLIFIER CLASS C UNMODULATED*

	Maximum Rating					
	Per Tube	Per Tube			ube	
Power Output		400	400	330	125 Watts	s
Driving Power	•••••	12	18	25	25 Watts	s
DC Plate Voltage	4000	4000	3000	2000	1000 Volts	
DC Plate Current	225	125	165	215	225 ma	
DC Grid Current	60	30	40	55	60 ma	
DC Grid Voltage	1000	-260	-245	-230	-195 Volts	
Peak RF Grid Voltage	***************************************	450	480	500	480 Volts	
Plate Dissipation	100	100	100	100	80 Watts	S
Plate Input	500	500	500	430	225 Watts	5
*Carrier conditions for telegraphy.						

RADIO FREQUENCY POWER AMPLIFIER CLASS C PLATE MODULATED*


	Maximum Rating				
	Per Tube	Per Tube			ube
Power Output		335	335	275	115 Watts
Driving Power		19	23	25	23 Watts
DC Plate Voltage	3000	3000	2500	2000	1000 Volts
DC Plate Current	180	140	168	180	180 ma
DC Grid Current		35	40	45	45 ma
DC Grid Voltage	-800	-355	-360	-355	−315 Volts
Peak RF Grid Voltage		580	610	620	580 Volts
Plate Dissipation	85	85	85	85	65 Watts
Plate Input	420	420	420	360	180 Watts
*Carrier conditions for 100% modulation an	d 60% average value				

AUDIO FREQUENCY POWER AMPLIFIER CLASS B*

	Maximum Ratings						
	Two Tubes			Typical Operation, 2 Tubes			
Power Output		430	420	400	280	Watts	
Driving Power**	******	20	25	47	60	Watts	
DC Plate Voltage	3000	3000	2500	2000	1000	Volts	
DC Plate Current, Zero Signal	•••••	30	40	45	70	ma	
DC Plate Current, Max. Signal	500	200	240	280	480	ma	
DC Grid Voltage		-110	-80	-60	-15	Volts	
Peak AF Grid to Grid Voltage		470	460	520	530	Volts	
Plate Dissipation	200	170	180	160	200	Watts	
Plate Input, Max. Signal	600	600	600	560	480	Watts	
Load Resistance, Plate to Plate		36,400	25,200	16,400	4,000	Ohms	

^{*}All data for two tubes.

^{**}Instantaneous power at crest of cycle: effective power is ½ of this value.

This typical final push-pull amplifier is capable of a maximum unmodulated output of 750 watts and requires a driving power of less than 50 watts. The driver stage may consist of an HK 24 or a pair of 807 tubes which may be link coupled with the grid inductance, $L_{\rm I}$. It is advisable to supply enough fixed bias to prevent plate current flow under static conditions (see plate curve), and the remaining bias is then developed by the grid current flow through $R_{\rm g}$. Thus: DC grid voltage = Fixed Bias + $(R_{\rm g} \times DC$ grid current).

COMPONENTS

C₁ — Split-stator transmitting condenser, 100 mmfd. per section 0.07 inch air gap.

C₂ — Split-stator transmitting condenser, 75 mmfd. per section 0.20 inch air gap.

C₃ — .01 mfd. paper condenser.

N.C. — Neutralizing condensers 0.5 to 10 mmfd.

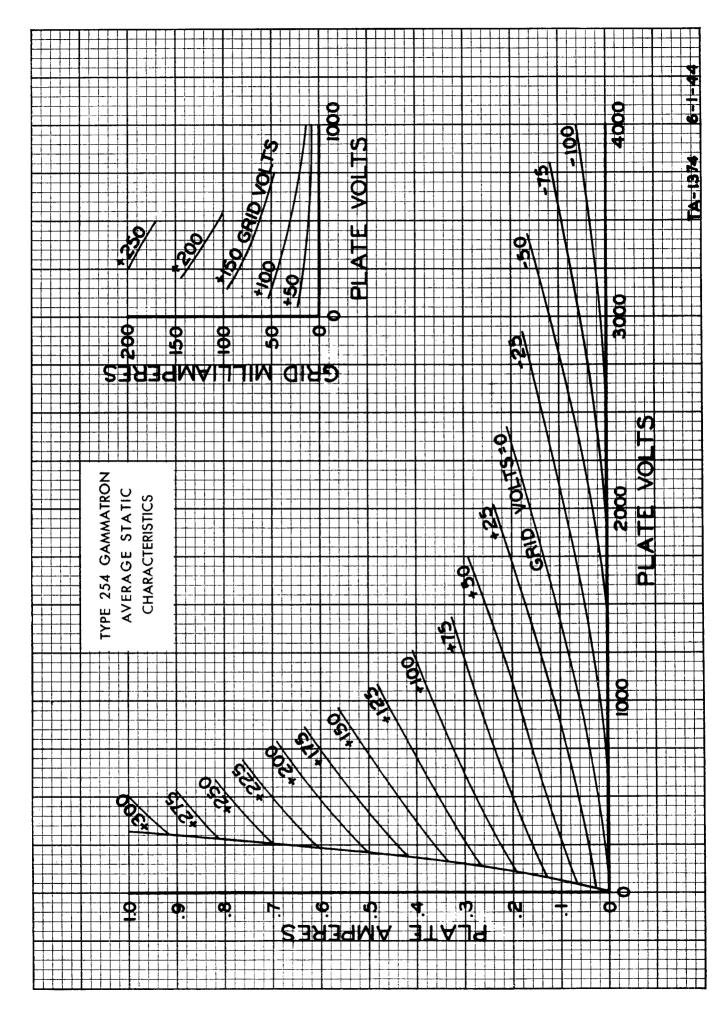
 J_1 and J_2 — Jacks to measure grid and cathode current.

R_g — As required by operating conditions (see data).

 $T_1 = 5.0$ volt, 15 ampere filament transformer.

COIL DATA

Band	L_1	$\mathbf{L_2}$
160 Meters	85 turns # 24 DCC Close Wound Diameter 13/4 Inches	30 Turns #12 Length 4½ Inches Diameter 5 Inches
80 Meters	52 Turns #18 Enamel Close Wound Diameter 13/4 Inches	22 Turns #12 Length 3 Inches Diameter 5 Inches
40 Meters	30 Turns #14 Enamel Close Wound Diameter 13/4 Inches	22 Turns #12 Length 35/8 Inches Diameter 21/2 Inches
20 Meters	12 Turns #14 Enamel Length 13/8 Inches Diameter 13/4 Inches	8 Turns #12 Length $1\frac{1}{8}$ Inches Diameter $2\frac{1}{2}$ Inches
10 Meters	6 Turns #14 Enamel Length 13/8 Inches Diameter 13/4 Inches	6 Turns ½-Inch Copper Tubing Length 4 Inches Diameter 2½ Inches


VERY HIGH FREQUENCY PERFORMANCE

FREQUENCY	30	60	120	200	mc
Class C Unmodulated					
Max. Input	500	430	360	280	Watts
Max. Plate Volts	4000	3200	2700	2300	Volts
Typical Plate Efficiency	80	77	72	64	Percent
Class C Plate Modulated					
Max. Input	420	360	300	230	Watts
Max. Plate Volts	3000	2600	2200	1900	Volts

RADIO FREQUENCY DOUBLER AMPLIFIER (Feedback neutralized by conventional methods)

Maximum Rating Per Tube Typical Operation, 1 Tube Power Output 150 125 80 Watts Driving Power 12 12 Watts 10 DC Plate Voltage 4000 2500 2000 1500 Volts DC Plate Current 100 112 120 ma DC Grid Current 12 ma 10 12 DC Grid Voltage -850-920-900 Volts Peak RF Grid Voltage 1050 1150 1125 Volts Plate Dissipation 100 100 100 Watts Plate Input 250 225 180 Watts

Gammatron Tubes

