HIGH-POWER OUTPUT PENTODE

EL 50

CHARACTERISTICS

Heater voltage	V_{f}	=	6.3	V
Heater current	$\mathbf{I_{f}}$	=	1.35	A
Anode voltage	Vα	=	800	V
Screen-grid voltage	V_{g_i}	=	400	V
Suppressor-grid voltage.	V_{g_s}	=	0	V
Anode current	Ια	=	22.5	mĀ
Screen-grid current	I_{g_2}	=	2.5	mĀ
Grid bias	V_{g_i}	=	-37	v
Slope	S	=	4	mA/V
AC resistance	$\mathbf{R_i}$	=	50	$\mathbf{k}\Omega$
Maximum output from	-			
two valves in Class				
AB push-pull with fixed				
grid bias	$W_{o_{max}}$	==	84	W
Total distortion	dtot	=	6.6	0/0
Required input per valve	Vi	=		,
Optimum load (anode to	- -			
anode)	\mathbf{R}_{α}	-	16	$\mathbf{k}\Omega$
,				****

SPECIAL ADVANTAGES

- High efficiency
- High sensitivity
- Small size

DESCRIPTION

The EL 50 is an indirectly heated 18 W output pentode intended mainly for class AB push-pull stages. The best efficiency is obtained with 800 V on the anodes, 400 V on the screen grids and grid bias of -37 V; under these conditions a pair of valves provides 84 W output when fully loaded, total distortion amounting to 6.6%; it is essential that the screen-grid voltage be constant if this output is to be obtained. A rectifier of minimum internal resistance should therefore be used; the gas-filled type is especially suitable.

Anode current I_{α_i} screen-grid current $I_{g_{\pm}}$ and total distortion d_{tot} shown against power output W_0 for two valves EL 50 in push-pull, cl. AB with fixed bias, and $V_{\alpha} =$ 800 V, $V_{\alpha_*} = 400 \text{ V}$.

Fig. 3.

Anode current I_{amax} and standing anode current I_{ao} screen-grid voltage V_{g_1} grid bias V_{g_1} , output power W_o , total distortion d_{tot} and anode load R_{a_1} shown for various anode voltages, for two valves EL 50 in push-pull cl.AB with fixed bias.

Fig. 2 shows the operating conditions for a pair of valves in push-pull, with an anode voltage of $800\ V$.

The EL 50 may, if necessary, be used at lower voltages; the performance obtained is indicated in fig. 3, and it will be observed that, even with a high-tension supply of 400/425 V, an output of 50 W is obtainable.

Arrangement of electrodes; connections and maximum dimensions in millimetres.

9/45