PHILIPS Niniwatt" SPECIAL VALVES

TRIODE FOR POWER AMPLIFIERS

4641

CHARACTERISTICS

Heater voltage .			Ví	=		4	V
Heater current .				=		21	A
Anode voltage				=	150	00	V
Grid bias			V_g	=	-14	10	V
Anode current			Iα	=		15	mA
Slope			S	=		2 :	mA/V
AC resistance				=		4.6	$\mathbf{k}\Omega$
The following characteristics relate to a pair of valves in Class AB push-pull, with fixed grid-bias:							
Anode voltage .			V_{α}		=	1500	v
Grid bias			Va		=	-144	V
Standing anode cur					==	2×10	mΑ
Anode current at pe							
input			Ia max		=	2×41	mΑ
Optimum load (and	de t	0					
anode)			$R_{\alpha\alpha}$		=	40	$\mathbf{k}\Omega$
Maximum output .			W_o		=	68	W
Total distortion .					=	1.	9 V
Input required for f	full						
output			V_{i}		=	105	V _{rms}

SPECIAL ADVANTAGES

- 1. Very low distortion
- 2. High efficiency

DESCRIPTION

The 4641 is a directly heated output triode with a maximum anode dissipation of 25 W; it has been designed especially for amplifiers with class AB push-pull output. The rated output is obtained only when fixed grid-bias is used. With an anode potential of 1500 V grid bias of -144 V and 105 V (RMS) input to the grids, the output power of a Class AB push-pull stage reaches 68 W, at only 1,9% total distortion. The anode current in the absence of a signal is 10 mA per valve, rising to 41 mA per valve when the stage is fully loaded; the optimum anode-toanode load is 40 k Ω . The same circuit, but with 1000 V on the anodes and grid bias fixed at -93 V, provides an output of 40 W at 2.35% total distortion, for an

Anode current shown against grid bias for anode potentials of 1000 V and 1500V.

Anode current Ia, required grid input Vi, (Veff = RMS) and total distortion d tot, as function of output power; for 2 valves in class AB push-pull with 1500 V on the anodes and fixed grid bias.

input of 65 V (RMS); in this case the optimum load is 20 k Ω .

When using automatic bias, maximum output will be less. With an anode voltage of 1000 V and a self-bias resistance of 1700 Ω , in the lead between the mid-tap of the heater transformer and earth, the power developed across an anode-to-anode load of 3500 Ω is 29 W, the distortion amounting to 4,5%. The grid input required is 28 V (RMS) per valve, and the anode current varies between 25 and 28 mA.

Owing to the high anode voltage, a special 4-pin base is used, and the internal layout of the valve has been designed to avoid risk of arcing.

Arrangement of electrodes, connections and maximum dimensions in millimetres.