

6GN8 TRIODE-PENTODE

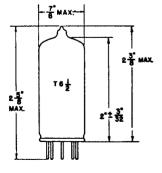
6GN8 ET-T3027 Page 1

DESCRIPTION AND RATING=

The 6GN8 is a miniature tube containing a sharp-cutoff pentode and a high-mu triode in one envelope. The pentode section is intended primarily for use as a video amplifier. The triode section is suitable for use as a voltage amplifier or sync separator.

GENERAL

ELECTRICAL		MECHANICAL		
Cathode—Coated Unipotential		Mounting Position—Any		
Heater Characteristics and Ratings		Envelope—T-6½, Glass		
Heater Voltage, AC or DC*	Volts	Base-E9-1, Small Button 9-Pin		
Heater Current†075	Amperes	Outline Drawing—EIA 6-3		
Direct Interelectrode Capacitances‡		Maximum Diameter 7/8	Inches	
Pentode Section		Maximum Over-all		
Grid-Number 1 to Plate: (Pg1 to Pp)	pf	Length25/8	Inches	
Input: Pg1 to $(h+k+Pg2+Pg3+i.s.)$	pf	Maximum Seated		
Output: Pp to $(h+k+Pg2+Pg3+i.s.)$ 4.2	pf	Height	Inches	
Triode Section				
Grid to Plate (Tg to Tp)4.4	pf			
Input: Tg to (h+Tk)	pf			
Output: Tp to (h+Tk)	\mathbf{pf}			
Pentode Grid-Number 1 to Triode Plate: (Pg1 to Tp), maximum0.005	pf			
Triode Grid to Pentode Plate: (Tg to Pp), maximum0.018	pf			
Pentode Plate to Triode Plate: (Pp to Tp), maximum0.17	\mathbf{pf}	1		


MAXIMUM RATINGS

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

PHYSICAL DIMENSIONS

EIA 6-3

TERMINAL CONNECTIONS

Pin 1—Triode Cathode

Pin 2—Triode Grid
Pin 3—Triode Plate
Pin 4—Heater
Pin 5—Heater
Pin 6—Pentode Cathode, Grid
Number 3, and Internal
Shield
Pin 7—Pentode Grid Number 1
Pin 8—Pentode Grid Number 2
(Screen)
Pin 9—Pentode Plate

BASING DIAGRAM

EIA 9DX

MAXIMUM RATINGS (Continued)

DESIGN-MAXIMUM VALUES	Pentode Section	Triode Section	
Plate Voltage	330	330	Volts
Screen Supply Voltage	330		Volts
Screen Voltage—See Screen Rating Chart			
Positive DC Grid-Number 1 Voltage	0	0	Volts
Plate Dissipation	5.0	1.0	Watts
Screen Dissipation	1.1		Watts
Heater-Cathode Voltage			
Heater Positive with Respect to Cathode			
DC Component	100	100	Volts
Total DC and Peak	200	200	Volts
Heater Negative with Respect to Cathode			
Total DC and Peak	200	200	Volts
Grid-Number 1 Circuit Resistance			
With Fixed Bias	0.25	0.5	Megohms
With Cathode Bias	1.0	1.0	Megohms

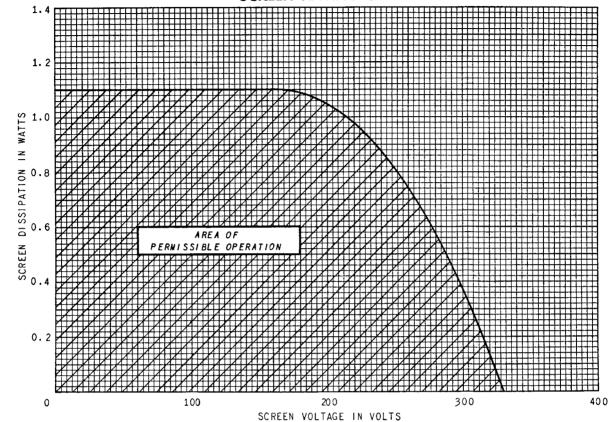
CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Pe	ntode Section	Triode Section	
Plate Voltage	50 200	250	Volts
Screen Voltage	50 150		Volts
Grid-Number 1 Voltage		-2	Volts
Cathode-Bias Resistor	. 100		Ohms
Amplification Factor		100	
Plate Resistance, Approximate	. 60000	37000	Ohms
Transconductance		2700	Micromhos
Plate Current5	5 25	2.0	Milliamperes
Screen Current	8 5.5		Milliamperes
Grid-Number 1 Voltage, Approximate			
Ib = 10 Microamperes		-5	Volts
Grid-Number 1 Voltage, Approximate			
Ib = 100 Microamperes	-10		Volts

^{*} The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or


elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

[†] Heater current of a bogey tube at Ef = 6.3 volts.

[‡] Without external shield.

[§] Applied for short interval (two seconds maximum) so as not to damage tube.

SCREEN RATING CHART

RECEIVING TUBE DEPARTMENT

Owensboro, Kentucky