

6EU7TWIN TRIODE

6EU7 ET-T3023 Page 1

DESCRIPTION AND RATING

The 6EU7 is a miniature, high-mu, twin triode primarily designed for use in low-level stages of high-gain audio-frequency amplifiers. Isolation of the heater pins in the new basing employed and inherent low hum properties make use of the 6EU7 in this application advantageous.

GENERAL

ELECTRICAL	
Cathode—Coated Unipotential	
Heater Characteristics and Ratings	
Heater Voltage, AC or DC*6.3 ± 0.6	Volts
Heater Current†0.3	Ampere
Direct Interelectrode Capacitances‡	
Grid to Plate, Each Section: (g to p)1.5	
Input, Each Section: g to $(h+k)$ 1.6	pf
Output, Each Section: p to $(h+k)$ 0.2	pf

MECHANICAL

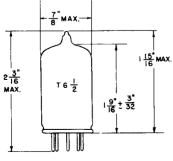
Mounting Position—Any
Envelope—T-6 ½, Glass
Base—E9-1, Small Button 9-Pin
Outline Drawing—EIA 6-2

Maximum Diameter ... ½ Inch
Maximum Over-all Length ... 236 Inches
Maximum Seated Height ... 116 Inches

MAXIMUM RATINGS

DESIGN-MAXIMUM VALUES, EACH SECTION

Plate Voltage	Volts
Positive DC Grid Voltage 0	Volts
Negative DC Grid Voltage55	Volts
Plate Dissipation	Watts

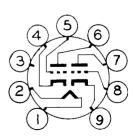

Heater-Cathode Voltage	
Heater Positive with Respect to Cathode	
DC Component 100	Volts
Total DC and Peak200	Volts
Heater Negative with Respect to Cathode	
Total DC and Peak200	Volts

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

PHYSICAL DIMENSIONS



EIA 6-2

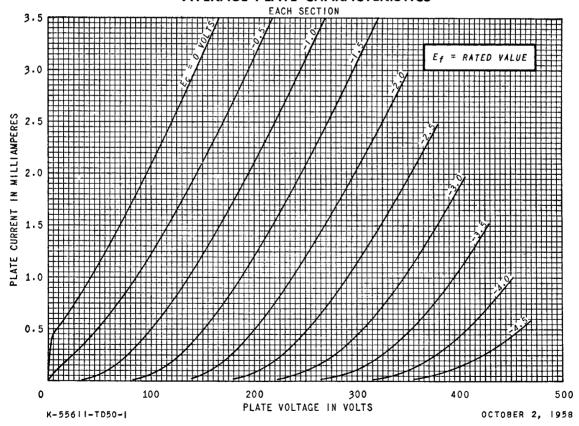
TERMINAL CONNECTIONS

Pin 1—Heater
Pin 2—Heater
Pin 3—No Connection
Pin 4—Cathode (Section 2)
Pin 5—Grid (Section 2)
Pin 6—Plate (Section 2)
Pin 7—Plate (Section 1)
Pin 8—Grid (Section 1)
Pin 9—Cathode (Section 1)

BASING DIAGRAM

EIA 9LS

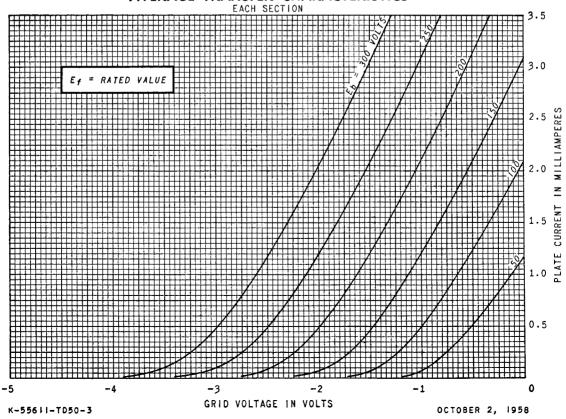
CHARACTERISTICS AND TYPICAL OPERATION


Class A ₁ Amplifier, Each Section			
Plate Voltage 100		250	Volts
Grid Voltage		-2.0	Volts
Amplification Factor		100	
Plate Resistance, approximate80000		62500	Ohms
Transconductance		1600	Micromhos
Plate Current		1.2	Milliamperes
Equivalent Noise and Hum Voltage, Each Section, Average, True RMS§	1.8		Microvolts

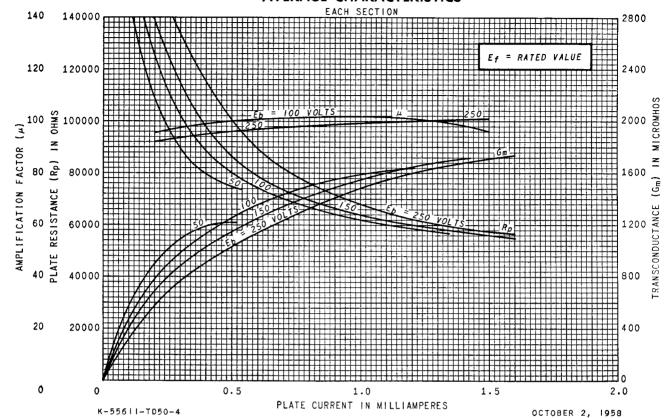
- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- † Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Without external shield.
- § Referred to grid and measured under the following conditions: Ef = 6.3 volts AC, CT of heater transformer grounded; Ebb = 250 volts; Rb = 100000 ohms; Rk = 2700 ohms, bypassed by 100 μ f; Rg = 0 ohms; Amplifier frequency range = 25 to 1000 cps.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.


AVERAGE PLATE CHARACTERISTICS

AVERAGE PLATE CHARACTERISTICS



AVERAGE TRANSFER CHARACTERISTICS

6EU7 ET-T3023Page 4
12-61

AVERAGE CHARACTERISTICS

