

6CK4

6CK4 ET-T1500 Page 1

TRIODE

FOR TV VERTICAL-DEFLECTION AMPLIFIER APPLICATIONS

DESCRIPTION AND RATING

V--4!--1

The 6CK4 is a low-mu triode designed for use as the vertical-deflection amplifier in television receivers.

GENERAL

ELECTRICAL

Cathode—Coated Unipotential Heater Voltage, AC or DC	Volte
Heater Current	
Direct Interelectrode Capacitances*	
Grid to Plate	$\mu\mu$ f
Input	$\mu\mu$ f
Output1.8	$\mu\mu$ f

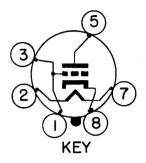
MECHANICAL

Mounting Position—Any Envelope—T-9, Glass Base—B6-60, Short Intermediate-Shell Octal 6-Pin

MAXIMUM RATINGS

	Vertical Deflectio Amplifie	n
DC Plate Voltage		
Peak Positive Pulse Plate Voltage	2000‡	Volts
Peak Negative Grid Voltage	250	Volts
Plate Dissipation	12§	Watts
DC Cathode Current	100	Milliamperes
Peak Cathode Current	350	Milliamperes
Heater-Cathode Voltage		
Heater Positive with Respect to Cathode		
DC Component	100	Volts
Total DC and Peak	200	Volts
Heater Negative with Respect to Cathode		
Total DC and Peak	200	Volts
Grid Circuit Resistance		
With Cathode Bias	2.2	Megohms

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

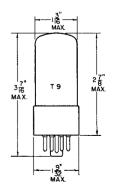

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, taking responsibility for the effects of changes in operating conditions due to variations in tube characteristics.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, and environmental conditions.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

GENERAL 🍪 ELECTRIC

BASING DIAGRAM



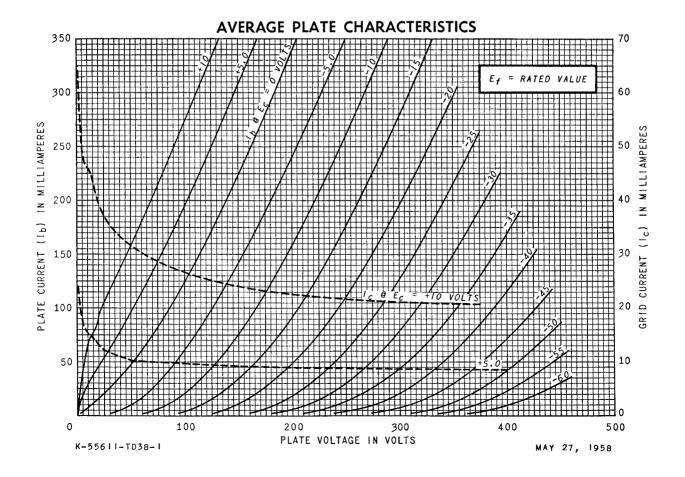
EIA 8JB

TERMINAL CONNECTIONS

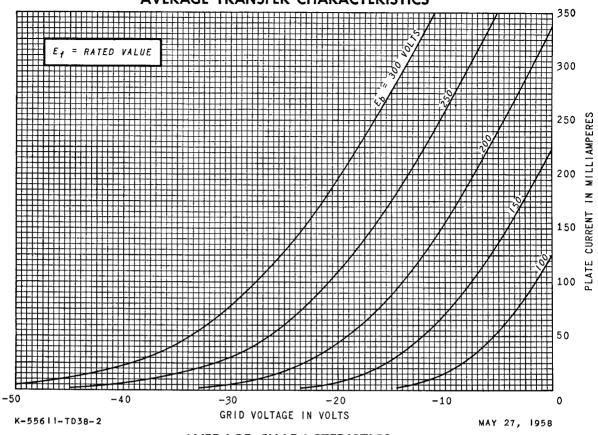
Pin 1—Grid
Pin 2—Heater
Pin 3—Grid
Pin 5—Plate
Pin 7—Heater
Pin 8—Cathode

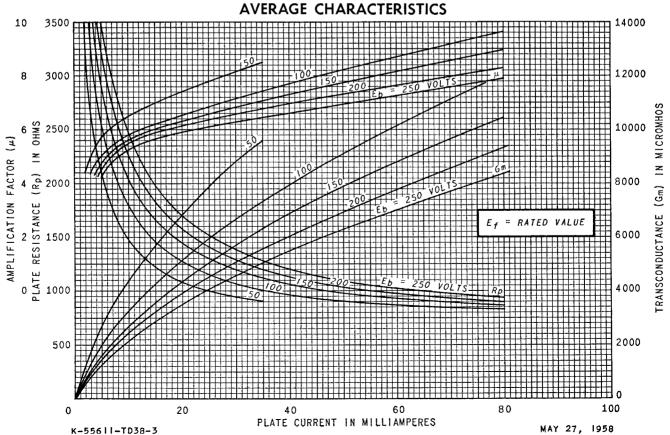
PHYSICAL DIMENSIONS

EIA 9-43



CHARACTERISTICS AND TYPICAL OPERATION


AVERAGE CHARACTERISTICS


Plate Voltage	. 100	250	25 0	Volts
Grid Voltage		-38	-28	Volts
Amplification Factor			6.6	
Plate Resistance, approximate			1200	Ohms
Transconductance			5500	Micromhos
Plate Current	. 125	10	40	Milliamperes
Grid Voltage, approximate				
Ib=0.5 Milliamperes			50	Volts

- * Without external shield.
- † For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations," Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.
- ‡ Value given is to be considered as an Absolute Maximum rating. In this case, the combined effect of supply voltage variation, manufacturing variation including components in the equipment, and adjustment of equipment controls should not cause the rated value to be exceeded.
- § In stages operating with grid-leak bias, an adequate cathode-bias resistor or other suitable means is required to protect the tube in the absence of excitation.
- ¶ Applied for short interval (two seconds maximum) so as not to damage tube.

AVERAGE TRANSFER CHARACTERISTICS

