## **HEPTODE** # FOR PENTAGRID CONVERTER APPLICATIONS IN AUTOMOBILE RECEIVERS ## DESCRIPTION AND RATING The 12GA6 is a miniature heptode primarily intended to perform the combined functions of mixer and oscillator in automobile radio receivers. The tube is specially designed to operate with plate and screen voltages supplied directly from a 12-volt storage battery. ## **GENERAL** #### **ELECTRICAL** | Cathode—Coated Unipotential | | |-------------------------------|-------| | Heater Voltage, AC or DC12.6* | Volts | | Heater Current | | | Direct Interelectrode Capacitances | With<br>Shield† | Without<br>Shield | | |-----------------------------------------|-----------------|-------------------|----------------------| | Grid-Number 3 to All | 8.0 | 8.0 | $\mu\mu$ f | | Plate to All | 13 | 8.0 | $\mu\mu$ f | | Grid-Number 1 to All | 5.0 | 5.0 | $\mu\mu f$ | | Cathode to All Except Grid-Number 1 | 20 | 15 | $\mu\mu$ f | | Grid-Number 3 to Plate, maximum | 0.25 | 0.3 | $\mu\mu {\mathsf f}$ | | Grid-Number 1 to Grid-Number 3, maximum | 0.15 | 0.1 <i>5</i> | $\mu\mu$ f | | Grid-Number 1 to Plate, maximum | 0.05 | 0.1 | $\mu\muf$ | | Grid-Number 1 to Cathode | 2.5 | 2.5 | $\mu\mu f$ | ## **MECHANICAL** Mounting Position—Any Envelope—T-5½, Glass Base-E7-1, Miniature Button 7-Pin ## **MAXIMUM RATINGS** | DESIGN-MAXIMUM VALUES | | |-----------------------------------------|---------| | Plate Voltage | Volts | | Screen Voltage | Volts | | Positive DC Grid-Number 3 Voltage 0 | Volts | | Negative DC Grid-Number 3 Voltage | | | Heater-Cathode Voltage | | | Heater Positive with Respect to Cathode | Volts | | Heater Negative with Respect to Cathode | Volts | | Grid-Number 3 Circuit Resistance10 | Megohms | Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the tube manufacturer to provide acceptable serviceability of the tube, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other tubes in the equipment, equipment control adjustment, load variation, signal variation, and environmental conditions. The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others. #### **BASING DIAGRAM** EIA 7CH ### **TERMINAL CONNECTIONS** Pin 1—Grid Number 1 (Oscillator Grid) Pin 2—Cathode and Grid Number 5 Pin 3—Heater Pin 4—Heater Pin 5-Plate Pin 6—Grid Numbers 2 and 4 (Screen) Pin 7—Grid Number 3 (Signal Grid) ### PHYSICAL DIMENSIONS EIA 5-2 12GA6 ET-T1553 Page 2 **CONVERTER SERVICE** ## CHARACTERISTICS AND TYPICAL OPERATION | Plate Voltage | 12.6 | Volts | |-----------------------------------------|--------|--------------| | Screen Voltage | 12.6 | Volts | | Grid-Number 3 Supply Voltage | 0 | Volts | | Grid-Number 3 Resistor (Bypassed) | 2.2 | Megohms | | Grid-Number 1 Voltage, RMS, approximate | 1.6 | Volts | | Grid-Number 1 Resistor | 33,000 | Ohms | | Plate Resistance, approximate | 1.0 | Megohms | | Conversion Transconductance | 140 | Micromhos | | Plate Current | 0.30 | Milliamperes | # OSCILLATOR CHARACTERISTICS (Not Oscillating) | OSCILLATOR CHARACTERISTICS (Not Oscillating) | | | |----------------------------------------------|------|--------------| | Plate Voltage | 12.6 | Volts | | Screen, Connected to Plate | | | | Screen Voltage | 0 | Volts | | Grid-Number 3 Voltage | 0 | Volts | | Amplification Factor‡ | 9.0 | | | Transconductance : | 2400 | Micromhos | | Cathode Current | 3.6 | Milliamperes | | Grid-Number 1 Voltage, approximate | | • | | lb = 10 Microamperes | -3.3 | Volts | | | | | - \* When used in automobile service from a 12-volt source, under no circumstances should the heater voltage be less than 10.0 volts or more than 15.9 volts. These extreme variations in heater voltage may be tolerated for short periods; however, operation at or near these absolute limits in heater voltage necessarily involves sacrifice in performance at low heater voltage and in life expectancy at high heater voltage. Equipment reliability can be significantly increased with improved supply-voltage regulation. - † With external shield (EIA 316) connected to pin 2. - ‡ Between Grid-Number 1 and Grid-Numbers 2 and 4 connected to Plate. **ELECTRONIC COMPONENTS DIVISION** Schenectady 5, N. Y.