RF POWER TRIODE

Water cooled

QUICK REFERENCE DATA

Indust	rial RF	oscillator; class	-C	
freq.	three phase			
	V_a	W_{o}		
MHz	kV	kW		
30	12	29.0		
30	10	23,3		
	8	17.9		
	-	,-		

HEATING: direct; thoriated tungsten filament

Filament voltage	v_f	=	8,0 V
Filament current	If	=	98 A
Cold filament resistance	R_{fo}	=	Ω 800,0

The filament is designed to accept temporary fluctuations of +5% and -10%

The filament current must never exceed a peak value of 210 A instantaneously at any time during the initial energizing schedule.

CAPACITANCES

Anode to all other elements except grid	Ca	=	0,4 pF
Grid to all other elements except anode	Cg	=	37 pF
Anode to grid	Cag	=	30 pF
TYPICAL CHARACTERISTICS			
Anode voltage	V_a	=	12 kV

Anode current $I_a = 2 \text{ A}$ Mutual conductance S = 20 mA/VAmplification factor $\mu = 34$

TEMPERATURE LIMIT (Absolute limit)

Seal temperature max. 220 °C

Generally, a low velocity air flow to the seals is required.

Table 1 Water cooling characteristics

 $T_i = max. 50 \, OC$

W _a (kW)	T _i	q _{min} 1)	ΔP	max. outlet temperature
	(°C)	(I/min)	(kPa)*	T _o (^o C)
5	20	6	2	35
	50	15	22	56
10	20	11	10	35
	50	25	70	56
15	20	16	25	35
	50	37	130	56
20	20	22	50	35
	50	49	230	56

To ensure a uniform RF current distribution in the grid seal especially at frequencies higher than 4 MHz, the grid lead should be connected as shown below.

Fig. 1 Grid lead detail.

¹⁾ At inlet temperatures between 20 and 50 °C the required quantity of water can be found by proportional interpolation

^{* 100} kPa ≈ 1 at

MECHANICAL DATA

Net weight of the tube : 2.8 kg

Net weight of water jacket: 2.1 kg

Dimensions in mm

Fig. 2 Mechanical outline.

Tube with grid connector and water jacket

Mounting position: vertical with anode down

ACCESSORIES

Filament connectors

with cable : 40662 Grid connector : 40663

Water jacket

: K717

O-ring

large

: 2622 080 30895

small

: 2622 080 30736

RF CLASS C OSCILLATOR FOR INDUSTRIAL USE with anode voltage from three-phase half-wave rectifier without filter

LIMITING VALUES (Absolute limits)

Frequency		f	:	up to	30	MHz
Anode voltage		V	<i>T</i> a =	max.	13	kV
Anode current		I	a =	max.	4.8	A
Anode dissipation		V	v _a =	max.	20	kW
Anode input power		ν	v _{ia} =	max.	60	kW
Negative grid voltage		-V	7 _g =	max.	1500	V
Grid current		I	g =	max.	0.8	A
Grid circuit resistance			.g =	max.	10	$k\Omega$
OPERATING CONDITIONS						
Frequency	f	=	30	30	30	MHz
Transformer voltage	v_{tr}	=	8.9	7.4	6.0	kV
Anode voltage	v_a	=	12	10	8	kV
Anode current, loaded	I_a	=	3.2	3.2	3.2	A
Anode current, unloaded	I_a	=	0.52	0.50	0.48	A
Grid current, loaded	I_g	=	0.50	0.50	0.50	A
Grid current, unloaded	I_g	=	0.74	0.77	0.80	A
Grid resistor	$R_{\mathbf{g}}$	=	2.0	1.6	1.1	$k\Omega$
Load resistance	R_{a}	=	1800	1450	1100	Ω
Feedback ratio under loaded						
conditions	$v_{g_{\sim}}/v_{a_{\sim}}$	=	16	17	19	%
Anode input power	w_{ia}	=	38.4	32.0	25.6	kW
Anode dissipation	w_a	=	9.4	8.7	7.7	kW
Output power	W_{o}	=	29.0	23.3	17.9	kW
Efficiency	η	=	75.5	72.5	70	%
Output power in the load	$\mathbf{w}_{\!\ell}$	z	25	20	15.5	kW ¹)

 $^{^{1}\}mbox{)}$ Useful power in the load measured in a circuit having an efficiency of 90%

Fig. 3 Constant current characteristics.

TBW12/25

page	sheet	date
1	165	1988.02
2	166	1988.02
3	167	1988.02
4	168	1988.02
5	169	1988.02
6	FP	2000.09.22