PENTODE

COATED UNIPOTENTIAL CATHODE

HEATER
26.5 VOLTS 0.30AMP.
AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW

SHORT INTERMEDIATE SHELL 8 PIN OCTAL LOW LOSS PHENOLIC

75

GLASS BULB

THE 26E6WG IS A RUGGEDIZED, SINGLE-ENDED BEAM PENTODE USED IN AF POWER OUTPUT APPLICATIONS REQUIRING APPROXIMATELY FIVE WATTS. THE HEATER DESIGN MAKES THIS TYPE IDEAL FOR OPERATION IN AIRBORNE EQUIPMENT WHERE A 26 VOLT POWER SUPPLY IS NORMALLY AVAILABLE. ALSO THE RUGGEDIZED STRUCTURE IS CAPABLE OF WITHSTANDING SEVER SHOCK AND VIBRATION SUCH AS THAT ENCOUNTERED IN AIRCRAFT.

RATINGS ABSOLUTE MAXIMUM VALUES

HEATER VOLTAGE	26.5±15%	VOLTS
MAXIMUM DC PLATE VOLTAGE	220	VOLTS
MAXIMUM DC GRID #2 VOLTAGE	150	VOLTS
MAXIMUM PLATE DISSIPATION	12.5	WATTS
MAXIMUM GRID: #2 DISSIPATION	1.75	WATT
MAXIMUM HEATER CATHODE VOLTAGE	±3 00	VOLTS
MAXIMUM ALTITUDE	10 000	FEET

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS CLASS A AMPLIFIER

32.133 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		
HEATER VOLTAGE	26.5	VOLTS
HEATER CURRENT	0.3	AMP.
DC PLATE VOLTAGE	200	VOLTS
DC GRID #1 VOLTAGE	-14	VOLTS
DC GRID #2 VOLTAGE	135	VOLTS
PEAK AF SIGNAL VOLTAGE	14	VOLTS
ZERO SIGNAL PLATE CURRENT	61	Ма
ZERO SIGNAL GRID #2 CURRENT	3.0	Ма
MAXIMUM SIGNAL PLATE CURRENT	56	MA
MAX!MUM SIGNAL GRID #2 CURRENT	9	m.A

- TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS - CONTID.

CLASS A1 AMPLIFIER

PLATE RESISTANCE	18 000 ohms
TRANSCONDUCTANCE	7 100 μmнos
EXTERNAL PLATE LOAD RESISTANCE	2 600 ohms
TOTAL HARMONIC DISTORTION	10 PERCENT
POWER OUTPUT	6 WATTS

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Ef = 26.59, Eb = 2009dc, Ec2 = 1359dc, Ec1 =-149dc EXCEFT AS MODIFIED BELOW

	INITIAL			500 HOUR LIFE TEST			
	INDI Min.	VIDUAL HAX.	PROD.	AVG. Max.	INDIV	/I DUAL Max.	
HEATER CURRENT	275	325					m A
HEATER-CATHODE LEAKAGE	0	75					μAdc
TOTAL GRID CURRENT	0	-3					μAdc
PLATE CURRENT (1)	43	79			A	~~~	mAdc
POWER OUTPUT B	4.8				2.9		WATTS
PLATE CURRENT (2)							
$(E_{C1} = 45 \text{ Vdc})$	0	1					mAdc
SCREEN GRID CURRENT	0	6					mAdc
TRANSCONDUCTANCE	5800	8400					∠ MH0S
GRID EMISSION							
(E _b =E _{c1} =E _{c2} =30Vdc)	180						mAdc

SPECIAL REQUIREMENTS

	MIN.	MAX.	
VARIABLE FREQUENCY VIBRATION ^C			
(R _p =2000, £ _{c1} =-27Vdc) LOW FREQUENCY VIBRATION ^D		7 5 0	mVac
$(R_p = 2000, E_{c1} = -22 dc)$		350	mVac
SHOCKE (HAMMER ANGLE = 48°)			
VIBRATIONAL FATIGUEF			
POST SHOCK AND FATIGUE END POINTS LOW FREQUENCY VIBRATION HEATER—CATHODE LEAKAGE PLATE CURRENT (2) POWER OUTPUT	 0 0 4.15	500 100 2	mVac µAdc mAdc WATTS
MECHANICAL RESONANCE G			WALLS
AF NOISE ^H $(E_{sig}^{-2}200 \text{ mVac}, R_{p}^{-2}2000)$ HEATER CYCLING LIFE TEST		17	VU
(E _f =32Vac, E _b =E _{c2} =E _{c1} =O)			

NOTES

A DURING THE FIRST 100 HOURS OF LIFE, PLATE CURRENT (1) SHALL NOT CHANGE BY MORE THAN 15% FROM ITS INITIAL VALUE.

BEs1g=9.9 Vac, Rp=2600

C SEE MIL-E-1C 4.9.20.3

DSEE MIL-8-10 4.9.20.4

E SEE MIL-E-10 4.9.20.5

FSEE MIL-E-10 4.9.20.6

THE MOUNT SHALL EXHIBIT NO PRONOUNCED MECHANICAL RESONANCE BELOW 100 CPS.

H SEE MIL-E-10 4.10.3.2