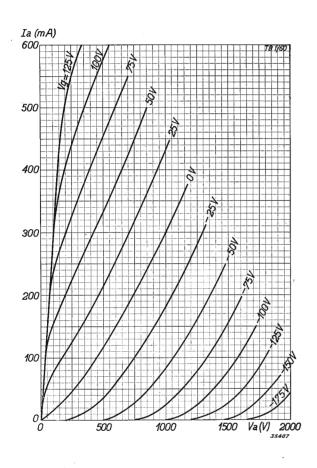
PHILIPS SENDERÖHRE

T B 1/60

Diese Triode ist mit einem thorierten Wolframheizfaden versehen. Die Anode und das Gitter sind mit zwei Kontaktstiften oben auf dem Kolben verbunden, so daß die Selbstinduktion der Gitter- und Anodenleitungen in der Röhre und die innere Kapazität äußerst gering sind. Die Röhre eignet sich demzufolge hervorragend zum Gebrauch auf Kurzund Ultrakurzwellen.

Die TB 1/60 kann als H.F.-Verstärkeroder Oszillatorröhre in Telegraphieoder Telephoniesendern auf Wellenlängen bis zu 1 m herab verwendet werden. Die auf verschiedenen Wellenlängen höchstzulässigen Anodenspannungen sind in der nachstehenden Tabelle angegeben:

Wellenlänge	2,5 m und höher	1,6 m	1 m
Höchstzulässige Ano- denspannung	1250 V	900 V	650 V


Die gesamte Nutzleistung und der Wirkungsgrad von zwei in verschiedenen Einstellungen auf einer Wellenlänge von 5 m arbeitenden Röhren TB 1/60 sind in der nachstehenden Tabelle zusammengestellt.

Einstellung	Anoden- spannung	Nutz- leistung	Wirkungs- grad
H.FKlasse C (Telegraphie)	1250 V	145 W¹)	58%
H.FKlasse B (Tele- phonie)	1250 V	39 W ¹) ²)	28%
H.FKlasse C (Ano- denspannungsmodu- lation)	1000 V	$114 \ \mathrm{W^1)^2})$	62%

¹⁾ Kreisverluste sind abzuziehen.

²⁾ Nutzleistung in der Trägerwelle (max. Modulationstiefe 100%).

PHILIPS SENDERÖHRE TB 1/60

Heizspannung V_f	= 7.5 V
Heizstrom	= ca. 3,25 A
Sättigungsstrom I_s	= ca. 1,5 A
Anodenspannung V_a	= max. 1250 V
Höchstzulässiger Anodenverlust $\dots W_a$	= max. 50 W
Geprüfter Anodenverlust W_{at}	= 60 W
$Verst \"{a}rkungs faktor \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	= ca. 10,5
Steilheit bei $V_a=1250$ V, $I_a=62,5$ mA S	= ca. 2,3 mA/V
Höchstzulässiger Kathodenstrom \boldsymbol{I}_k	= max. 120 mA
Anoden/Kathodenkapazität C_{ak}	= ca. 0.75 pF
Gitter/Kathodenkapazität C_{gk}	= ca. 2,2 pF
Anoden/Gitterkapazität C_{ag}	= ca. 2,8 pF
Maximale Gesamtlänge l	= 173 mm
Maximaler Durchmesser d	- 79 mm