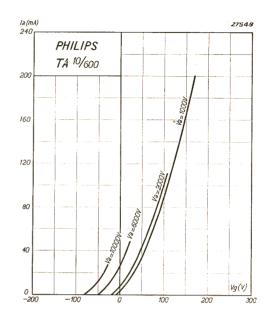


PHILIPS

TRANSMITTING VALVE

TA 10/600

Description


The anode dissipation of this valve with tungsten filament may attain the comparatively high value of 200 watts. In the table below the attainable output is indicated for various values of the efficiency.

These data have been calculated for operation at an anode voltage of 10000 volts. The anode current may reach a value of 80 milliamps. This valve can be used on wavelengths down to 150 metres.

Efficiency	Input	Output	Anode dissipation
50 %	400 watts	200 watts	200 watts
60 %	500 watts	300 watts	200 watts
70 %	670 watts	470 watts	200 watts
75 %	800 watts	600 watts	200 watts

In conjunction with this valve, two Philips rectifying valves DA 10/550 can be used.

If no importance is attached to the construction as per drawing, with terminals for filament and anode connection, this valve can if desired also be had in a more simple construction, viz, not having these terminals with fixing clamp but only beaded leads.

Technical Data

Filament voltage	$V_{\rm f}$	12·5 V
Filament current	1_f	≕ appr. 6·3 A
Total emission	_s	— appr. 0·4 A
Anode voltage	V_a	= max. 10000 V
Max. permissible anode dissipation	W_a	= 200 W
Anode dissipation during test	W_{at}	== 300 W
Amplification factor	μ	== appr. 160
Mutual conductance at I _a = 75 mA	S_{norm}	appr. 1·3 mA/V
Max. mutual conductance	S_{max}	= appr. $1.8 mA/V$
Internal resistance at I _a = 75 mA	R_i	= appr. 120000 ohms