|                                                                                          | M                                        | EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H                    | AN         | IC          | AL        | D                | A'         | $\Gamma A$ | 1                                         |                                          |                                                                                               |                                                                                                                                                               |
|------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------|-----------|------------------|------------|------------|-------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bulb                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | T-3                                                                                           |                                                                                                                                                               |
| Base                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| Outline                                                                                  | •                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    |            | •           | •         | •                | •          | •          |                                           |                                          | EC 3-11                                                                                       |                                                                                                                                                               |
| Basing                                                                                   |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |            | •           | ٠         | •                |            | •          | 1.                                        | <b>.</b> .                               | 801                                                                                           |                                                                                                                                                               |
| Cathode                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           | •                | Co         | ate        | d (                                       | Jnıj                                     | potential                                                                                     |                                                                                                                                                               |
| Mounting Position                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | Any                                                                                           |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| DATINICOL (AL L                                                                          | 3.6                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | ,           |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| RATINGS <sup>1</sup> (Absolute                                                           | IVI                                      | ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ımı                  | um         | )           |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| Bulb Temperature .                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | 250                                                                                           | °C                                                                                                                                                            |
| Altitude $^{2}$                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | 80,000                                                                                        | Ft.                                                                                                                                                           |
| Radiation                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | ,                                                                                             |                                                                                                                                                               |
| Total Dosage (S ne                                                                       | 11tt                                     | ากร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /sa                  | cm         | /se         | c )       |                  |            |            |                                           |                                          | $10^{16}$                                                                                     | nyt                                                                                                                                                           |
| Dose Rate (neutro                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | $10^{12}$                                                                                     |                                                                                                                                                               |
| Dose Rate (Heutic                                                                        | )115/                                    | 34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CII                  | 1/ 30      | C. )        | •         | •                | •          | •          | •                                         | •                                        | 10                                                                                            | 11 V                                                                                                                                                          |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| DURABILITY CHARA                                                                         | AC                                       | TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RI                   | ST         | ICS         | 3         |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | /50                                                                                           | 0                                                                                                                                                             |
| Impact Acceleration (3/2                                                                 | 4 m                                      | sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Du                   | rati       | on)         |           | •                | •          | •          | •                                         | •                                        | 450                                                                                           | G                                                                                                                                                             |
| Fatigue (Vibrational A                                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| Extended Periods)                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | 10                                                                                            | G                                                                                                                                                             |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| FAILURE RATE RAT                                                                         | IN                                       | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| Class (1) — Inoperativ                                                                   | es                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           | 1 :                                      | 3%/200                                                                                        | Hours                                                                                                                                                         |
| Class (2) All and n                                                                      | oini                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | •           | •         | •                | •          | •          | •                                         | 5                                        | $\frac{1}{4}\%/200$                                                                           | Hours                                                                                                                                                         |
| Class (2) — All end pe<br>Class (3) — All end pe                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                    |            | •           | •         | •                | •          | •          | •                                         | 2.                                       | 70/ /200                                                                                      | Louis                                                                                                                                                         |
| Class (5) — All end p                                                                    | OIIII                                    | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                    | • •        | •           | •         | ٠                | •          | •          | •                                         | ۷.,                                      | 1%/200                                                                                        | Hours                                                                                                                                                         |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          | E                                        | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EC7                  | ΓRI        | CA          | L         | $\mathbf{D}_{I}$ | AT         | A          |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
| HEATER CHARACTE                                                                          | ERI                                      | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Gamma$ IC          | S          |             |           |                  |            |            |                                           |                                          |                                                                                               |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | 63                                                                                            | V                                                                                                                                                             |
| Heater Voltage <sup>3</sup>                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | 6.3                                                                                           |                                                                                                                                                               |
|                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | -                                                                                             | V<br>mA                                                                                                                                                       |
| Heater Voltage <sup>3</sup>                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |             |           |                  |            |            |                                           |                                          | -                                                                                             |                                                                                                                                                               |
| Heater Voltage <sup>3</sup><br>Heater Current                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | •           | ٠         | ٠                |            |            | •                                         |                                          | 175                                                                                           | mA                                                                                                                                                            |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D <b>E</b>           | <br>       | •           | ٠         | ٠                |            |            | •                                         |                                          | 175<br><b>Unshie</b>                                                                          | mA<br>elded)                                                                                                                                                  |
| Heater Voltage <sup>3</sup> Heater Current  DIRECT INTERELEC  Grid to Plate              | :<br>TR                                  | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :<br>DE              | <br>C.     | <b>AP</b> . | <b>AC</b> | IT               | <b>A</b> I | NC         | ·<br>CES                                  | S (                                      | 175<br>Unshie                                                                                 | mA<br>elded)<br>μμf                                                                                                                                           |
| Heater Voltage <sup>3</sup> Heater Current  DIRECT INTERELEC  Grid to Plate Input        | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :<br>D <b>E</b><br>: |            | <b>AP</b> . | AC        | IT<br>:          | <b>A</b> I |            | CES                                       | ·<br>8 (<br>·                            | 175<br><b>Unshie</b><br>1.0<br>1.6                                                            | mA<br>elded)<br>μμf<br>μμf                                                                                                                                    |
| Heater Voltage <sup>3</sup> Heater Current  DIRECT INTERELEC  Grid to Plate              | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :<br>D <b>E</b><br>: |            | <b>AP</b> . | AC        | IT<br>:          | <b>A</b> I |            | CES                                       | ·<br>8 (<br>·                            | 175<br>Unshie                                                                                 | mA<br>elded)<br>μμf<br>μμf                                                                                                                                    |
| Heater Voltage <sup>3</sup> Heater Current  DIRECT INTERELEC  Grid to Plate Input        | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :<br>D <b>E</b><br>: |            | <b>AP</b> . | AC        | IT<br>:          | <b>A</b> I |            | CES                                       | ·<br>8 (<br>·                            | 175<br><b>Unshie</b><br>1.0<br>1.6                                                            | mA<br>elded)<br>μμf<br>μμf                                                                                                                                    |
| Heater Voltage <sup>3</sup> Heater Current  DIRECT INTERELEC  Grid to Plate Input Output | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | C          | AP.         | AC        | IT<br>:          | <b>A</b> I |            | CES                                       | ·<br>8 (<br>·                            | 175<br><b>Unshie</b><br>1.0<br>1.6                                                            | mA<br>elded)<br>μμf<br>μμf                                                                                                                                    |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR                                       | Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   |            | AP.         | AC        | IT               | AI         |            | ·<br>CES<br>·                             | S (                                      | 175<br><b>Unshie</b><br>1.0<br>1.6<br>0.75                                                    | mA<br>elded)<br>μμf<br>μμf<br>μμf                                                                                                                             |
| Heater Voltage <sup>3</sup> Heater Current                                               |                                          | Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | C.         | AP.         | AC        | IT               | AI         |            | ·<br>CES<br>·                             | S (                                      | 175<br><b>Unshie</b><br>1.0<br>1.6<br>0.75                                                    | mA<br>elded)<br>μμf<br>μμf<br>μμf                                                                                                                             |
| Heater Voltage <sup>3</sup> Heater Current                                               |                                          | Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | C.         | AP.         | AC        | IT               | . AI       |            | · · · · · · · · · · · · · · · · · · ·     | 6 (                                      | 175<br>Unshie<br>1.0<br>1.6<br>0.75<br>+ 10%)                                                 | mA<br>elded)<br>μμf<br>μμf<br>μμf                                                                                                                             |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR                                       | Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE<br>·<br>·         | C          | AP          | AC        | I <b>T</b>       |            |            | · · · · · · · · · · · · · · · · · · ·     | 5 (<br>                                  | 175 <b>Unshie</b> 1.0 1.6 0.75 + 10%) 250                                                     | mA<br>elded)<br>μμf<br>μμf<br>μμf<br>V<br>Vdc                                                                                                                 |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | C          | AP.         | AC        | IT               |            |            | (-)                                       | 5 (6 · · · · · · · · · · · · · · · · · · | 175 <b>Unshie</b> 1.0 1.6 0.75 + 10%) 250 360                                                 | mA elded) μμf μμf μμf ν V Vdc v                                                                                                                               |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | Cz         |             | AC        | IT               |            |            | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5                                                  | mA  Elded) μμf μμf μμf V Vdc V W                                                                                                                              |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR                                       | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | Cz         | AP.         | AC        | IT               |            |            | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5                                                  | mA elded) μμf μμf μμf ν V Vdc v                                                                                                                               |
| Heater Voltage <sup>3</sup> Heater Current                                               | TR M ltag                                | OI<br>·<br>·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DE                   | C          |             | AC        | IT               |            |            | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15                                               | mA elded) μμf μμf μμf V Vdc v W mAdc                                                                                                                          |
| Heater Voltage <sup>3</sup>                                                              | TR                                       | OI  · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DE                   | Ca         |             | AC        | IT               |            |            | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15                                               | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc                                                                                                                     |
| Heater Voltage <sup>3</sup>                                                              | TR M                                     | OI  · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DE                   | Ca         |             | AC        | IT               |            |            | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15                                               | mA elded) μμf μμf μμf V Vdc v W mAdc                                                                                                                          |
| Heater Voltage <sup>3</sup>                                                              | TR M                                     | Ol<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DE                   | Cz         | AP          |           | IT               |            |            | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15                                               | mA elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc                                                                                                              |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | um         | AP          | AC        | IT               |            | 5.3        | (-)                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55                                          | mA elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc                                                                                                              |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | um         |             | AC        | IT               |            | 5.3        | (-:                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15                                               | mA elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc                                                                                                              |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | um         |             | AC        | IT               |            | 5.3        | (-:                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200                                  | mA elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc                                                                                                              |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | um         |             | AC        | IT               |            | 5.3        | (-:                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200                                  | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc vdc v                                                                                                           |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | um         |             | AC        | IT               |            | 5.3        | (-:                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200                                  | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc vdc v                                                                                                           |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | um         |             | AC        | IT               |            | 5.3        | (-:                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200                                  | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc vdc v                                                                                                           |
| Heater Voltage <sup>3</sup>                                                              | TR M itag                                | Ol<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | im                   | um         |             | AC.       | IT               | . 6        | 5.3        | (-:                                       | S (                                      | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0                              | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc                                                                                                         |
| Heater Voltage <sup>3</sup>                                                              | TR M itag                                | OI  ax  cet  Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DE                   | Cart to    | (AP         | AC        |                  |            |            | (                                         | 12,-                                     | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0                              | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc                                                                                                         |
| Heater Voltage <sup>3</sup>                                                              | TR  M  Itag                              | OI ax Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE                   | Carrier to |             | AC.       |                  |            |            | (                                         | 12,-                                     | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0                              | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc V                                                                                   |
| Heater Voltage <sup>3</sup>                                                              | TR M itag                                | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | Cart to    |             | AC.       | . IT             |            | 5.3<br>    | (                                         | 12,-                                     | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0 100 270 9.0                  | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Adc Vdc Vdc Vdc Adc Vdc Vdc Adc Vdc Adc Vdc Adc Vdc Adc Vdc Vdc Adc Vdc Adc Vdc Adc Adc Adc |
| Heater Voltage <sup>3</sup>                                                              | TR  M  Itag                              | OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE                   | Cart to    | (AP)        | thooatho  | . IT             | . 6        | 5.3<br>    | (-: · · · · · · · · · · · · · · · · · · · | 12,-                                     | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0 100 270 9.0 16.5             | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Adc Vdc Vdc Adc Vdc Adc Adc                                                             |
| Heater Voltage <sup>3</sup>                                                              | TR  M  c c c c c c c c c c c c c c c c c | Ol<br>ax<br>e <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DE                   | um         |             | AC.       | . IT             |            | 5.3<br>    | (-)                                       | 112,-                                    | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0  100 270 9.0 16.5 3800       | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc v Meg                                                                                                   |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | Colored American Colore | im                   | um         |             | AC.       | . IT             |            | 5.3<br>    | (=:                                       | 112,-                                    | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0  100 270 9.0 16.5 3800 -11.5 | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc v μmAdc                                                                                                 |
| Heater Voltage <sup>3</sup>                                                              | TR M ltag                                | Colored American Colore | im                   | um         |             | AC.       | . IT             |            | 5.3<br>    | (=:                                       | 112,-                                    | 175  Unshie 1.0 1.6 0.75  + 10%) 250 360 1.5 15 0 55 200 200 1.0  100 270 9.0 16.5 3800 -11.5 | mA  Elded) μμf μμf μμf V Vdc v W mAdc Vdc Vdc Vdc Vdc v Meg                                                                                                   |

## QUICK REFERENCE DATA

The Sylvania Premium Subminiature Type 6946 is a general purpose medium-mu triode designed specifically for guided missile service.

This type is characterized by extraordinary freedom from interelement short circuits of short term duration, by high resistance to interelement leakage, and by stable performance. It is designed for service at high altitudes and where severe conditions of mechanical shock, vibration and high temperature are encountered.

The 6946 is manufactured and inspected to meet the applicable specification for reliable operation.

Max.

Max.





### sylvania electronic tubes

A Division of Sylvania Electric Products Inc.



#### **NOTES:**

- 1. Limitations beyond which normal tube performance and tube life may be impaired.
- 2. If altitude rating is exceeded, reduction of instantaneous voltage (Ef excluded) may be required.
- 3. Tube life and reliability of performance are directly related to the degree of regulation of the heater voltage to its centerrated value of 6.3 volts. The Min. and Max. values are 5.5 and 6.9 volts respectively.
- 4. MIL-E-1D Par. 6.51.1 does not apply. Peak voltage shown should not be exceeded.

#### ACCEPTANCE CRITERIA

| Test Conditions |  |     |     |   |     |     |     |    |     |     |      |     |            |                                                    |     |
|-----------------|--|-----|-----|---|-----|-----|-----|----|-----|-----|------|-----|------------|----------------------------------------------------|-----|
| Heater Voltage  |  |     |     |   |     |     |     |    |     |     | 6.3  | V   |            | Heater-Cathode Voltage MIL-E-1 Par. 3.2.26.1 . 0 V |     |
| Plate Voltage . |  |     |     |   |     |     |     |    |     |     | 100  | Vd  | lc         | Cathode Resistor MIL-E-1 Par. 3.2.26.1 270 Oh      | ıms |
| Grid Voltage .  |  |     |     |   |     |     |     |    |     |     | 0    | V   |            |                                                    |     |
|                 |  | For | the | P | urp | ose | s o | fі | nsp | ect | ion, | use | applicable | e reliable paragraphs of MIL-E-1.                  |     |

| MIL-E-1   |                                                                    | AQL  |      |      |                 |      |              |              |
|-----------|--------------------------------------------------------------------|------|------|------|-----------------|------|--------------|--------------|
| Ref.      | Test                                                               | (%)  | Min. | LAL  | its No<br>Bogey | UAL  | Max.         | Units        |
| Measuren  | nents Acceptance Tests, Part 1, Note 1                             |      |      |      |                 |      |              |              |
| 4.10.8    | Heater Current                                                     | 0.65 | 165  |      | 175             | _    | 185          | mA           |
| 4.10.15   | Heater-Cathode Leakage                                             |      |      |      |                 |      |              |              |
|           | $Ehk = +100 Vdc \dots$                                             | _    |      | _    |                 |      | 5.0          | μAdc         |
|           | $Ehk = -100 \text{ Vdc} \dots$                                     |      |      |      |                 |      | 5.0          | μAdc         |
| 4.10.6.1  | Grid Current:                                                      | 0.6  |      | ļ    |                 | l    |              | 1            |
| 4.10.4.1  | Rg = 1.0 Meg                                                       | 0.65 | 0    | 7.0  |                 | 10.1 | -0.4         | μAdc         |
| 4.10.4.1  | Plate Current (1): ALD = 2.0                                       |      | 6.0  | 7.9  | 9.0             | 10.1 | 12.0         | mAdc<br>mAdc |
| 4.10.4.1  | Plate Current (2):                                                 | 0.05 | 0.0  |      |                 |      | 12.0         | mac          |
| 4.10.4.1  | $Ec = -11.5 \text{ Vdc}; \text{ Rk} = 0 \text{ Ohms} \dots$        | 0.65 |      |      |                 |      | 150          | uAdc         |
| 4.10.9    | Transconductance (1): ALD = 690 Sm                                 |      |      | 3500 | 3800            | 4100 |              | umhos        |
| 4.10.9    | Transconductance (1): Sm                                           |      | 3000 |      | _               |      | 4600         | μmhos        |
| 4.7.5     | Continuity and Shorts (Inoperatives)                               |      | _    |      |                 |      | _            | [            |
| 4.9.1.1   | Mechanical:                                                        |      |      |      |                 |      |              |              |
|           | Envelope JEDEC 3-11                                                |      |      |      | _               |      | _            |              |
| Measurem  | nents Acceptance Tests, Part 2                                     |      |      |      |                 |      |              |              |
| 4.8.2     | Insulation of Electrodes                                           | 2.5  |      | ] _  | _               |      | _            |              |
|           | $Eg-all = -100 V \dots$                                            | _    | 500  | _    | -               |      | _            | Meg          |
|           | Ep-all = -300 V                                                    |      | 500  | -    | -               | _    | -            | Meg          |
| 4.10.9    | Transconductance (2):                                              | ٠    |      |      |                 |      | 1            | l~           |
| 4.10.4.1  | Ef = $-5.5$ V $\triangle$ Sm                                       | 2.5  | _    |      | _               |      | 15           | %            |
| 4.10.4.1  | Ec1 = $-8.5$ ; Rk = 0                                              | 2.5  | 5.0  |      |                 |      |              | μAdc         |
| 4.10.6.2  | Grid Emmission (Ic1): Notes 3 & 4                                  | 2.5  | 7.0  | _    | _               |      |              | μπας         |
|           | Ef = 7.5  V; Ec = -11.5  Vdc;                                      |      |      |      |                 | İ    |              |              |
|           | Rg = 1.0 Meg; $Rk = 0$ Ohms                                        | 2.5  | 0    |      | _               |      | -0.5         | $\mu$ Adc    |
| 4.10.3.2  | AF Noise: Note 5                                                   |      |      |      |                 |      |              | 1            |
|           | Esig. (Cal.) = 50 mVac; Ec = $-4$                                  |      |      |      |                 |      |              |              |
|           | Vdc; Rg = 0.1 Meg; Rp = 0.01 Meg;<br>Rk = 0 Ohms                   | 2.5  | 1    |      |                 |      |              | i            |
| 4.10.11.1 | Amplification Factor                                               |      | 14.0 |      | 16.5            |      | 19.0         |              |
| 4.10.7.5  | Pulse Emission: Note 6                                             | 0.5  | 14.0 |      | 10.7            |      | 19.0         |              |
| 1.10.7.5  | Ef = 6.0  V;  e pulse = 50  v;                                     |      | İ    |      |                 |      |              | İ            |
|           | $tp = 25 \ \mu sec; \ prr = 200 \ pps \dots$                       |      | —    | _    | _               | _    | _            |              |
|           | ik                                                                 |      | 200  | l —  | _               |      | <del>-</del> | ma           |
| }         | △ ik/tp                                                            | _    | _    |      | -               |      | 20           | %            |
|           | Hum: Note 7<br>Ef = 6.3 Vac @ 400 cps; $Eb = Ec = 0$ ;             | İ    | 1    |      |                 |      |              |              |
|           | Rk = .005 Meg                                                      | 2.5  | l    |      | l _             |      | 15           | mv pk-pk     |
|           | Operation Time: Note 8                                             |      |      |      |                 | _    | 20           | secs         |
| 4.10.14   | Capacitance: No Shield                                             | 6.5  | l —  |      |                 |      |              | 15005        |
|           | Cgp                                                                |      | 0.72 |      | 1.0             |      | 1.22         | $\mu\mu f$   |
|           | Cin                                                                |      | 1.2  |      | 1.6             | l —  | 2.0          | μμf          |
|           | Cout                                                               | l —  | 0.55 | -    | .75             | _    | 0.93         | $\mu\mu f$   |
| 4.9.12.1  | Low Pressure Voltage Breakdown: Note 9                             | 6.   |      | [    |                 |      | -            |              |
| 60101     | Pressure = $21 \pm 2$ mm Hg; Voltage = $300$ Vac                   | 6.5  | -    | _    | -               | -    | _            |              |
| 4.9.19.1  | Vibration (1):<br>$Rp = 10,000 \text{ Ohms}$ ; $Ck = 1000 \mu f$ : |      |      | [    | l               | 1    |              |              |
| Ī         | $F = 40 \text{ cps}; G = 10 \dots F$                               | 1.0  |      |      |                 |      | ا            | 37           |
|           | White Noise Vibration: Notes 10 & 11                               | 1.0  | _    | _    | _               | -    | 25           | mVac         |
|           | $Rp = 10,000 \text{ Ohms}; Ck = 1000 \mu f$                        | 2.5  | l —  |      |                 | 30   | 60           | mv pk-pk     |
|           | Peak Acceleration = 15 G                                           | 2.5  | l —  |      | l —             | 5    | 10           | mVac -       |

#### ACCEPTANCE CRITERIA (Continued)

| MIL-E-1  |                                                                                                                                                        |                    |      |                       |                       |     |                |                            |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|-----------------------|-----------------------|-----|----------------|----------------------------|--|
| Ref.     | Test                                                                                                                                                   | (%)                | Min. | LAL                   | Bogey                 | UAL | Max.           | Units                      |  |
| Degradat | ion Rate Acceptance Tests, Note 4                                                                                                                      |                    |      |                       |                       |     |                |                            |  |
| 4.9.5.3  | Subminiature Lead Fatigue                                                                                                                              | 2.5                | 4    |                       |                       | _   |                | arcs                       |  |
| 4.9.20.5 | Shock: Note 12<br>Hammer Angle = 30°                                                                                                                   | 20                 | _    | _                     | _                     | _   |                |                            |  |
| 4.9.20.6 | Fatigue: Notes 9 and 13 $G=10$ ; Variable Frequency                                                                                                    | 6.5                | 6    | _                     |                       | _   |                | Hours                      |  |
|          | Post Shock and Fatigue Test End Points                                                                                                                 |                    |      |                       |                       |     |                |                            |  |
|          | Vibration (1):<br>Heater-Cathode Leakage                                                                                                               |                    | _    |                       |                       | -   | 75             | mVac                       |  |
|          | Ehk = +100 Vdc<br>Ehk = -100 Vdc<br>Change in Transconductance (1)                                                                                     |                    | =    | _                     | _                     | =   | 15<br>15       | μAdc<br>μAdc               |  |
|          | of Individual Tubes \( \triangle \text{Sm} \)                                                                                                          |                    | _    |                       | _                     | _   | 15             | %                          |  |
| 4.9.6.3  | Glass Strain:                                                                                                                                          | 4.0                |      |                       |                       |     |                |                            |  |
| Acceptan | ce Life Tests, Note 4                                                                                                                                  |                    |      |                       |                       |     |                |                            |  |
| 4.11.7   | Heater Cycling Life Test (1):  (2000 Cycles Min.) Note 14  Ef = 7.0 V; 1 min. on, 4 min. off;  Ehk = 140 Vac; Ec = Eb = 0 V                            | 2.5                | _    |                       |                       | _   |                |                            |  |
| 4.11.7   | Heater Cycling Life Test (2): (300 Cycles Min.) Note 14 Ef = 10 V; Ehk = +200 Vdc; Rhk = 0; 10 secs. on, 4 min. off                                    | 10.0               |      |                       |                       | _   |                |                            |  |
| 4.11.3.1 | Stability Life Test: Note 15 Eb = 250 Vdc; Ehk = +200 Vdc; Rg = 1.0 Meg; TA = Room; Rk = 200 Ohms                                                      |                    | _    | _                     | _                     | _   |                |                            |  |
| 4.11.4   | Stability Life Test End Points: Change in Transconductance (1) of Individual Tubes △ Sm                                                                | 1.0                | _    | _                     | _                     | _   | 15             | %                          |  |
| 4.11.3.1 | Survival Rate Life Test: (100 Hours) Note 16 Ebb = 250 Vdc; Rk = 510 Ohms; Rp = 0.01 Meg; Rg = 1.0 Meg; TA = Room                                      |                    | _    |                       |                       |     | _              |                            |  |
| 4.11.4   | Survival Rate Life Test End Points: Continuity and Shorts (Inoperatives) Grid Current Heater-Cathode Current: Ihk Electrode Insulation: Rp-all Rg1-all | 2.5<br>0.65<br>6.5 |      | _<br>_<br>_<br>_<br>_ | _<br>_<br>_<br>_<br>_ |     | -0.1<br>10<br> | μAdc<br>μAdc<br>Meg<br>Meg |  |

| MIL-E-1 |                                                                                                                                                                                                                 |            | CEPTANCE<br>TS (1)      | FAILUR<br>CLASS (3 |                         |                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------|-------------------------|--------------------|
| Ref.    | Test                                                                                                                                                                                                            | MIN.       | MAX.                    | MIN.               | MAX.                    | Units              |
| 4.11.5  | Intermittent Life Test: Notes 17 & 18 Survival Rate Life Conditions; T Envelope = 250°C Min.                                                                                                                    |            | <u> </u>                | _                  |                         |                    |
| 4.11.4  | Intermittent Life Test End Points (200 Hours) Inoperatives: Note 19 Grid Current Heater Current Change in Transconductance (1) of Individual Tubes; △ Sm/t Transconductance (2): △ Sm/Ef Heater-Cathode Leakage | 0<br>165   | -1.0<br>190<br>20<br>15 |                    | -1.5<br>195<br>25<br>25 | μAdc<br>mA<br>%    |
|         | Ehk = ±100 Vdc Insulation of Electrodes p-allg-all                                                                                                                                                              | 200<br>200 | 10                      |                    | 15<br>_                 | μAdc<br>Meg<br>Meg |
|         | Transconductance (1) Average Change Avg. △ Sm/t                                                                                                                                                                 |            | 15                      | _                  |                         | %                  |

#### ACCEPTANCE CRITERIA (Continued)

| MIL-E-1<br>Ref. | Test                                  | ALLOWABLE DEFECTIVES |
|-----------------|---------------------------------------|----------------------|
| Acceptance      | e Life Tests, Note 4, (Cont'd.)       |                      |
| 1               | Individual Lot Acceptance             |                      |
|                 | Total Inoperatives                    | 2                    |
|                 | Total Defectives                      | 5                    |
|                 | Failure Rate Tests: Note 18           |                      |
|                 | Failure Rate Class 1                  |                      |
|                 | Inoperatives:                         | 5                    |
|                 | Failure Rate Class 2                  |                      |
|                 | Combined defectives to Limits (1)     |                      |
|                 | Including Inoperatives:               | 16                   |
|                 | Failure Rate Class 3                  |                      |
|                 | Combined defectives to F. R. 3 Limits | 0                    |
|                 | Including Inoperatives:               | 8                    |

#### ACCEPTANCE CRITERIA NOTES:

- 1: The AQL for the combined defectives for attributes in Measurements Acceptance Tests, Part 1, excluding Inoperatives and Mechanical shall be one (1) percent. A tube having one (1) or more defects shall be counted as one (1) defective.
- 2: For Variables Sampling Procedure, see MIL-E-1, Appendix C, Paragraph 20.2.4.
- 3: Prior to this test, tubes shall be preheated for 5 minutes at the conditions indicated below. Test within three seconds after preheating. Three minute test is not permitted. Grid Emission is a destructive test so tubes subjected to it are not to be accepted under this specification, nor are subsequent tests to be performed on the same tubes.

| Ef  | Eb  | Ec1 | Rk/k | Rg1 |
|-----|-----|-----|------|-----|
| V   | Vdc | Vdc | ohms | Meg |
| 7.5 | 250 | 0   | 2000 | 1.0 |

4: Destructive Tests: Tubes subjected to the following destructive tests are not to be accepted under this specification.

| 4.9.5.3  | Subminiature Lead Fatigue           |
|----------|-------------------------------------|
| 4.9.20.5 | Shock                               |
| 4.9.20.6 | Fatigue                             |
| 4.11.7   | Heater Cycling Life Tests (1) & (2) |
| 4.11.5   | Intermittent Life Test              |
| 4.10.6.2 | Grid Emission                       |

- 5: The rejection level shall be set at the VU meter reading obtained during calibration.
- 6: The pulse shall be applied to the plate and grid tied together. It shall be a square wave meeting the pulse shape requirement of MIL-E-1, par. 4.10.7.5, and in addition, the maximum amplitude shall occur within the first 20% of tp. The pulse shall be applied by means of a driving circuit which produces the specified pulse voltage directly at the plate and grid terminals with respect to cathode.

Peak currents shall be measured by means of a high impedance oscilloscope or equivalent device connected across a 1.0 ohm cathode resistor whose value is known to an accuracy of 1%. The specified limit, ik, refers to the maximum of the pulse amplitude. The variation of the output pulse amplitude, ik (tp), between 2% tp and 80% tp shall not exceed the specified limit where tp is as defined in MIL-E-1, par. 4.10.7.5.

- 7. Maximum total distortion of the filament supply voltage shall be 5%. The frequency response of the peak-to-peak measuring device from 20 cps to 5000 cps must be within 0.5 db of its response at 400 cps. Ground all leads except those for the cathodes and heater lead #3. Measure Hum voltage across specified Rk in each cathode separately.
- 8: Insert a cold tube into the test socket having all Plate Current (1) conditions applied and record Ib continuously for three minutes. Plate Current must reach 85% of the three minute figure within the time indicated.
- 9: This test shall be conducted on the initial lot and thereafter on a lot approximately every 30 days. In the event of lot failure, the lot shall be rejected and the succeeding lot shall be subjected to this test. Once a lot has passed, the 30-day rule shall apply. MIL-STD-105 Sample Size Code Letter F shall apply.

10: The tube shall be rigidly mounted on a table vibrating such that the instantaneous values of acceleration shall constitute approximately a "WHITE NOISE" spectrum which is free from discontinuities from 100 cps to 5000 cps and such that the RMS value of acceleration for frequencies outside this band shall constitute no more than five percent of the total RMS acceleration. The spectrum of instantaneous acceleration shall be such that each octave of bandwidth delivers 2.3 ± 0.2 G's RMS acceleration. With this the case, the RMS value of acceleration for any bandwidth within the specified spectrum is equal to:

Grms = 
$$2.3 \sqrt{3.32 \log_{10} (f2/f1)}$$

where f2 and f1 are the upper and lower frequencies respectively of the band under consideration. The degree of clipping of the peak accelerations shall be such that the peak value of acceleration is at least 15 G's.

Half the tubes in the sample shall be vibrated in position X1, the other half in position X2.

The voltage (ep) produced across the resistor (Rp) as a result of vibration shall be coupled through a compensating amplifier to a low pass filter. The compensating amplifier shall have a high input impedance (250 Kohms or more) and shall be adjusted to compensate for any insertion losses in the filter. The combined frequency response of amplifier and filter shall be flat within  $\pm 0.5$  db from 50 cps to 8000 cps, shall be down no more than 5 db at 10,000 cps and at 20 cps, and down at least 30 db at 13,000 cps. For reading the peak-to-peak value of output voltage, the filter output shall be fed directly to the input of a Ballantine Model 305 peak-to-peak electronic voltmeter or equal, while the RMS value shall be measured with a Hewlett Packard Model 400 C or equal. The impedance of the plate and screen voltage supplies shall not exceed that of a 40  $\mu$ f capacitor at 10 cps.

- 11: For variables sampling procedure, use MIL-E-1, Appendix C, par. 20.2.4.2.2.
- 12: A grid resistor of 0.1 meg shall be added; however, this resistor will not be used when a thyratron type short indicator is employed.
- 13: The tubes shall be rigidly mounted on a table vibrating at a constant acceleration level of 10 G. The frequency of vibration shall be varied from 30 cps to 3000 cps and back to 30 cps, with the period of the sweep cycle being three minutes. The rate of change of frequency with time shall be such that the frequency varies logarithmically with time. The tubes shall be vibrated for a total of six hours, that is, two hours in each of the three positions X1, X2, and Y1. Filament voltage only shall be applied to the tube under test.
- 14: The no load to steady state full load regulation of the heater voltage supply shall be not more than 3.0%.
- The sampling and testing procedure for the Stability Life Test shall be in accordance with MIL-E-1, Appendix C, Section 20.2.5.1.
- 16: For Survival Rate Life Test, the sampling and testing procedure shall be as defined in Sections 20.2.5.2 to 20.2.5.2.5 inclusive of MIL-E-1, Appendix C.

#### ACCEPTANCE CRITERIA NOTES (Continued)

- 17: Envelope temperature is defined as the highest temperature indicated when using a thermocouple of No. 40B and S, or small diameter elements welded to a ring of 0.025-inch diameter phosphor bronze placed in contact with the envelope. The envelope temperature requirement will be satisfied if a tube, having bogey Ib (±5 percent) under normal conditions, is determined to operate at or above the minimum specified temperature in any socket of the life-test rack.
- 18: 1.0 Intermittent Life Test Evaluation: The life test conducted in accordance with this specification shall be evaluated in two separate procedures. The first will be an evaluation on an individual lot basis in a similar manner to the one normally specified for reliable tubes. The second evaluation is the determination of a failure rate and its compliance to this specification. The life test will be conducted in accordance with MIL-E-1 procedures for reliable tubes except that the sampling plan will be changed from the presently specified double sampling plan to a single sampling plan with n = 40. Individual lot acceptance will be based on this sample size and the conformance of the lot to the maximum allowable defectives for inoperatives and also for combined defectives as specified.

#### 2.0 The Failure Rate Control:

- a. Purpose: It is the purpose of this specification to establish a means by which the Military may monitor and evaluate the failure rate of this tube type in order to provide a statistically valid description of this parameter that may be utilized in computing the reliability of equipments in which this type is used.
- b. Description: The failure rates on this type shall be evaluated using the life test information gathered on individual lots. Only those lots that pass the life test 'criteria for individual lots shall be used in the calculations for failure rates. The failure rate shall be based on a 5 lot moving average with the cumulative number of failures for each failure rate class plotted on their respective failure rate charts (See Charts 1, 2 and 3). Non-conformance of a tube to the 200 hour end points shall be considered a failure.

The Failure rate charts consist of a plot of consecutive lots manufactured with each point indicating the cumulative number of failures in the last five lots as evaluated against the specified criteria. In the operation of this procedure, each time a new lot is added, the number of defects from the earliest lot is dropped from the accumulation of defectives so that each plotted point on the chart will represent a total sample size of 200 tubes.

Any lot which fails the individual lot acceptance criteria shall not be included in the cumulations for failure rate charts. However, the number of defectives for such a failing lot should be plotted on the failure rate chart in its chronological order with the other lots. This point is plotted for information only.

- c. Qualification: In order to become a qualified source to this specification, it is mandatory that the manufacturer supply data on charts 1, 2 and 3 indicating that his failure rate is within the acceptable limits. A total quantity of 200 tubes life tested for 200 hours is required and this should be representative of two or more consecutively manufactured lots (e.g., 100 tubes from each of 2 lots or 40 from each of 5 lots). In the event more than 40 tubes per lot are used in the life test sample in order to accelerate qualification for failure rate, only the first 40 tubes life tested per lot shall be evaluated for the individual lot acceptance criteria.
- d. Maintenance of Failure Rate: When the manufacturer has become a qualified source to this specification and has received proper approval from the Military, those lots utilized for qualification and subsequent lots where the 5 lot moving evaluation failure rate continues within the specification, are to be considered acceptable to this specification and may be marked and shipped accordingly.
- e. Non-conformance of Failure Rate: The failure rate will be considered non-conforming when the total number of defectives (for the particular failure rate under evaluation) accumulated from the past 5 lot life test exceeds the number permissible as contained in the specification and on the failure rate chart. The lot of tubes which caused the failure rate limit to be violated shall be considered as acceptable and can be marked and shipped in accordance with this specification. When a failure rate criteria has been violated, the manufacturer has lost qualification to this specification and cannot mark and ship any subsequent lots to this specification without being requalified.
- f. Requalification for Failure Rate: Since all three failure rates specified in this specification are computed from the same life test data, a violation of 1 failure rate requires requalification for all three failure rates. Requalification shall follow the same procedure as for original qualification. Starting after the last lot which rendered disqualification, a life test sample of 200 tubes from the next two new consecutive lots will be required to conform to this specification before qualification is reinstated to the manufacturer.
- g. Charts: Each manufacturer intending or planning to supply tubes to this specification must forward his qualification data in the form of the three failure rate charts to the Military. These charts must be duly approved and signed by the Resident Government Inspector as representing the factual results of the life tests which were conducted in complete accordance with MIL-E-1 and this specification.
- 19: An inoperative as referenced in Life Tests shall be defined as a tube having one (1) or more of the following defects: Discontinuity (Ref. 4.7.1), Permanent Shorts (Ref. 4.7.2), Air Leaks (Ref. 4.7.6).

#### APPLICATION DATA

The Sylvania Premium Subminiature Type 6946 is a medium-mu triode designed specifically for guided missile service. It is especially well suited to a wide variety of low-frequency applications. These include resistance coupled amplifiers, sync clippers, blocking oscillators and multivibrators. Resistance-coupled amplifier data is shown in the accompanying table and circuit.

The 6946 may also be used as a v h f oscillator or Class-C amplifier. A curve of power output vs frequency at a constant input is shown in Figure 1 for oscillator service. Figure 2 shows the variation of input resistance with frequency.

This type is characterized by extraordinary freedom from interelement short circuits of short term duration, by high resistance to interelement leakage, and by stable performance. In addition, vibrational output when the tube is subjected to wide band (White Noise) vibration is held to a very low value. It is designed for service at high altitudes and where severe conditions of mechanical shock,

vibration and high temperature are encountered. These characteristics give the type special value in guided missile applications.

Tube durability under extreme vibration for extended periods is assured by more stringent fatigue testing techniques. Excitation for the fatigue test varies in frequency from 30 cps to 3,000 cps and back to 30 cps. Three minutes are required to sweep through one complete cycle. The sweep-frequency vibration has a constant acceleration level of 10 G in contrast to the 2.5 G level formerly used on most reliable receiving tube types. The sweep-frequency cycle is repeated continuously for two hours in each of three positions, totalling six hours.

To insure correlation with actual field conditions and thereby enhance equipment reliability, vibrational noise output is controlled by the "white noise test" as shown in the acceptance criteria. Briefly, this test consists of subjecting the tube to a white noise vibration spectrum covering the frequency band of 100 to 5000 cps at a rms level of 2.3 g's per octave and a peak level of 15 g's. Limits are shown

#### APPLICATION DATA (Continued)

for both peak and rms output. A further discussion of the white noise vibrational test is included in the frontal section of this manual.

The 6946 is manufactured and inspected to meet the applicable specification for reliability. Life expectancy is described by the life tests, specified on the attached pages. The actual life expectancy of the tubes in an operating circuit is affected by both the operating and environmental conditions involved. Likewise, the life tests specified indicate performance under certain operating criteria to a set

of specified end points. Performance at conditions other than those specified can usually be estimated only roughly as giving better or poorer life expectancy. For further discussion of life expectancy, reference should be made to the frontal section of this manual.

When operated under conditions common to on-off control applications, the tube exhibits freedom from the development of interface resistance. The heater-cathode construction is designed to withstand intermittent operation.



Figure 1-Oscillator performance curve.



Figure 2-Input resistance vs frequency.

#### RESISTANCE COUPLED AMPLIFIER DATA

|                                                               |                       | Ebb == 100 Volts                   |      |                                   |                                     |              | Ebb = 150 Volts                   |                                   |                                   |                                     |                                   |                                     |                                    | Ebb = 250 Volts                     |                                    |                                       |                                   |                                     |  |
|---------------------------------------------------------------|-----------------------|------------------------------------|------|-----------------------------------|-------------------------------------|--------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|--|
| Rb (megohms)                                                  | .c                    | .047                               |      | 0.10                              |                                     | 27           | С                                 | .10                               | C                                 | ).27                                | C                                 | .47                                 | C                                  | .10                                 | 0                                  | .27                                   | 27 0.47                           |                                     |  |
| Rcf (megohms) Rk (ohms) Ib (ma) Ec (volts) Eb (volts)         | 2200<br>1.04<br>-2.29 | .27<br>2200<br>1.04<br>-2.29<br>49 | .61  | .47<br>4700<br>.55<br>-1.17<br>44 | .27<br>10,000<br>.23<br>-2.32<br>35 | .22<br>-2.68 | .10<br>2700<br>.96<br>-2.59<br>51 | .47<br>4700<br>.82<br>-3.86<br>64 | .27<br>8200<br>.37<br>-3.03<br>47 | .47<br>10,000<br>.35<br>-3.52<br>51 | .10<br>8200<br>.25<br>-2.03<br>32 | .27<br>12,000<br>.22<br>-2.60<br>46 | .10<br>3300<br>1.55<br>-5.12<br>90 | .47<br>4700<br>1.30<br>-6.10<br>114 | .27<br>8200<br>0.63<br>-5.16<br>75 | .47<br>12,000<br>0.52<br>-6.23<br>104 | .10<br>6800<br>.43<br>-2.92<br>45 | .27<br>10,000<br>.40<br>-4.00<br>58 |  |
| Esig (volts RMS).<br>Eout (volts RMS).<br>Gain%<br>Distortion | 1.12<br>11.2          | 11.9                               | 11.3 | 0.1<br>1.19<br>11.9<br>0.37       | .92                                 |              | 0.1<br>1.04<br>10.4<br>0.36       | 0.1<br>1.05<br>10.5<br>0.39       | 0.1<br>1.00<br>10.0<br>0.39       | 0.1<br>1.00<br>10.0<br>0.37         | 0.1<br>.87<br>8.70<br>0.36        | 0.1<br>.94<br>9.40<br>0.46          | 0.1<br>1.07<br>10.7<br>0.39        | 0.1<br>1.08<br>10.8<br>0.47         | 0.1<br>1.06<br>10.6<br>0.43        | 0.1<br>1.04<br>10.4<br>0.50           | 0.1<br>0.97<br>9.7<br>0.32        | 0.1<br>1.03<br>10.3<br>0.40         |  |
| Esig (volts RMS)* Eout (volts RMS) Gain                       | 11.2<br>9.70          | 1.16<br>13.8<br>11.9<br>5.0        | 10.6 | 1.38<br>16.3<br>11.8<br>5.0       | 1.34<br>12.3<br>9.20<br>5.0         | 15.2<br>9.50 | 1.54<br>16.0<br>10.4<br>5.0       | 2.34<br>24.5<br>10.4<br>5.0       | 1.96<br>19.6<br>10.0<br>5.0       | 2.32<br>23.2<br>10.0<br><b>5</b> .0 | 0.92<br>7.95<br>8.65<br>5.0       | 1.64<br>15.4<br>9.40<br>5.0         | 2.60<br>27.4<br>10.5<br>5.0        | 3.80<br>41.0<br>10.8<br>5.0         | 3.10<br>32.9<br>10.6<br>5.0        | 3.93<br>40.0<br>10.2<br>5.0           | 1.43<br>13.9<br>9.7<br>5.0        | 2.68<br>27.2<br>10.2<br>5.0         |  |

<sup>\*</sup>Maximum signal for 5% distortion or 1/8 microampere grid current.

#### AVERAGE PLATE CHARACTERISTICS



#### AVERAGE PLATE CHARACTERISTICS



#### AVERAGE TRANSFER CHARACTERISTICS

