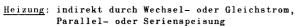


FARBSERIE-GELBE REIHE -

ENDPENTODE zur Verwendung in Weitverkehrsanlagen

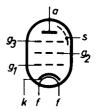

Garantierte Lebensdauer von 10 000 Stunden, gemittelt über 100 Röhren.

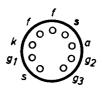
Zuverlässigkeit

Der P-Faktor, der den Röhrenausfall angibt, ist während der Lebensdauer weitgehend konstant und liegt bei $1,5\,$ $^0/$ oo pro 1000 Stunden.

Enge Toleranzen

Geringe Fertigungsstreuungen und hohe Konstanz während der Lebensdauer. (Siehe auch Kenndaten und Angaben für das Ende der Lebensdauer.)




$$U_f = 20 \ V^{-1})$$
 $I_f = 135 \pm 7 \ mA^{-1})$

Kapazitäten:

$$c_i$$
 = 11,5 ± 0,8 pF c_{ag1} < 0,02 pF
 c_o = 6,5 ± 0,6 pF c_{g1f} < 0,2 pF
 $c_i(I_k=25\text{mA})$ = 14,3 pF c_{kf} = 4,2 pF

Kenndaten:

Noval(E9-1)

beliebig

Die Sockelstifte sind

Fassung: B8 700 20

Halterung:88 477 A

$$-I_{\alpha 1} \stackrel{\geq}{=} 1,0 \mu A$$

Sockel:

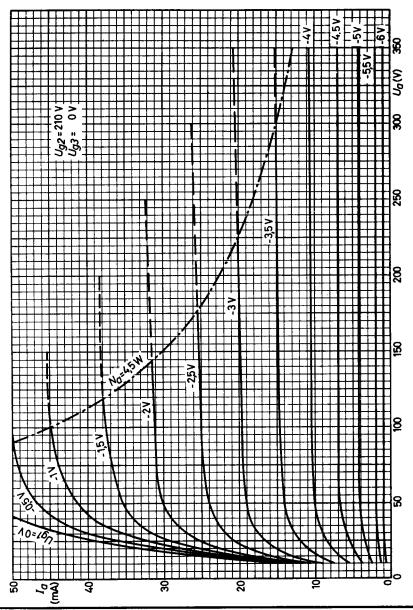
Einbau:

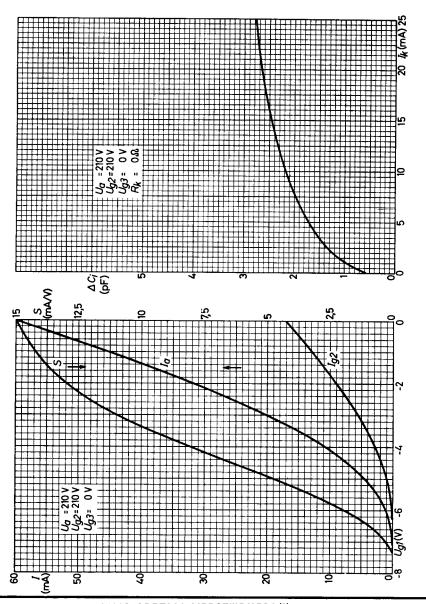
¹⁾ Da die Lebensdauer jeder Röhre von der genauen Einhaltung der Heizdaten abhängt, gilt die garantierte Lebensdauer nur bei Einhaltung der folgenden Heiztoleranzen: Bei Parallelspeisung ist die erlaubte Schwankung von Uf max. ± 5 % (absolute Grenzen). Bei Serienheizung ist die zulässige Abweichung des Heizstromes infolge Spannungsschwankungen und Streuungen der Einzelteile max. ± 1,5 % (absolute Grenzen).

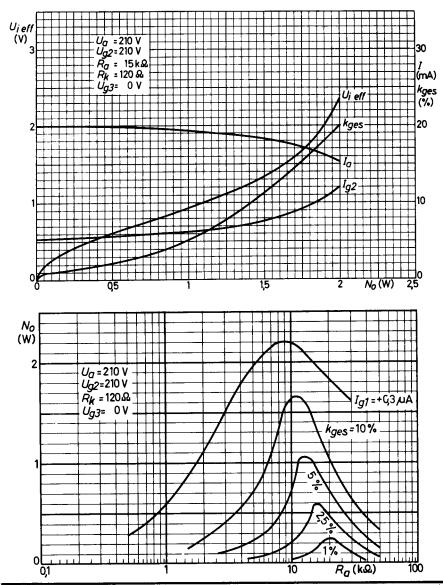
²) Das Ende der Lebensdauer wird bestimmt durch $I_{\mathbf{A}} \leq 13.5$ mA, $I_{\mathbf{A}2} \leq 3.1$ mA, $S \leq 7.8$ mA/V,

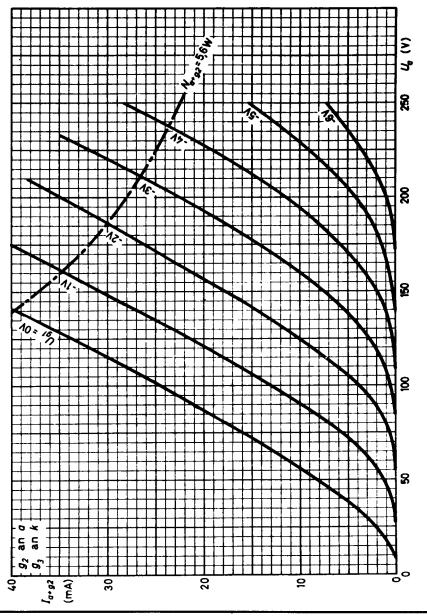
18046

Betriebsdaten:


		als Vorverstärker	als Endverst	Endverstärker	
$\mathtt{U}_{\mathbf{a}}$	=	210	210	v	
$\mathbf{u}_{\mathbf{g}3}$	=	0	0	v	
$\mathbf{U_{g2}}$	=	210	210	v	
$\mathbf{R}_{\mathbf{k}}$	=	180	120	Ω	
I a	=	15	20	mA.	
I_{g2}	=	4	5,3	TO.A	
s	=	10	11	mA/V	
r_a	=	0,4	0,3	$\mathbf{M}\Omega$	
$R_{\mathbf{a}}$	=	20	15	$\mathbf{k}\Omega$	
N _o	=	-	1	W	
kges	=	-	5	%	
v	=	5,15	-	N	


Grenzdaten:


$\mathbf{u_{a\ 0}}$	=	max.	550	V	$\mathbf{I}_{\mathbf{k}}$	=	max.	30	mA
$\mathbf{U}_{\mathbf{a}}$	=	max.	210	V	R_{g1}	=	max.	500	$k\Omega^{-1}$)
Na	=	max.	4,5	W	R _{g1}	=	max.	250	$k\Omega^{2}$)
$U_{g2} = 0$	=	max.	550	V	u _{fk}	=	max.	120	V
v_{g2}	=	max.	210	V	$R_{\mathbf{fk}}$	=	max.	20	$\mathbf{k}\Omega$
N_{g2}	=	max.	1,2	W	$t_{ ext{kolb}}$	=	max.	170	o C
$N_{\alpha 1}$									


¹⁾ Mit automatischer Gittervorspannung

²⁾ Mit fester Gittervorspannung

