


DL 962

PENTODE

für NF-Verstärkung

max. Abmessungen

Sockelschaltschema

TECHNISCHE DATEN

Heizung:

(Der Heizfaden ist in der Mitte angezapft. Die Hälften können parallel oder hintereinander geschaltet werden.)

	parallel am neg. Pol	hintereinan	der
$U_{\mathbf{f}}$	1,2	2,4	٧
I _f	120	60	mΑ
Ua	67,5		V
U_{q2}	67,5		V
U_{g1}	 7		V
	7,0		mΑ
	2,0		mΑ
ร้	1,5		mA/V
D_2	20		%
R_i	100		$k\Omega$
N~	150		mW
· ·			
Ua~	eft 4,5		٧
k	10		%
	U _g 2 U _{g1} 1 _a 1 _{g2} S D ₂ R _i N ~	U _f 1,2 I _f 120 U _a 67,5 U _{g2} 67,5 U _{g1} —7 I _a 7,0 I _{g2} 2,0 S 1,5 D ₂ 20 R _i 100 N 150 U _g ← eft 4,5	am neg. Pol

VEB RÖHRENWERK ANNA SEGHERS

Neuhaus am Rennweg

Fernruf 324 - Telegrammanschrift: Röhrenwerk Neuhausrennweg

Grenzwerte:

Anodenspannung	U _{a max}	120	V
Anodenverlustleistung	Q _{a max}	0,85	W
Schirmgitterspannung	U _{g2 max}	70	V
Schirmgitterbelastung	$N_{g2 max}$	0,22	W
Gitterableitwiderstand	R _{g1 max}	1	$M\Omega$
Katodenstrom	I _{k max}	12	mA

Kapazität:

Gitter 1 — Anode c_{a1/a} 0,4 pF

Nenngröße: 38 (nach DIN 41537)

Sockel: 7stiftiger Miniatursockel

Gewicht: ca.7 g

Alle mager gedruckten Werte, soweit nicht als Grenzwerte gekennzeichnet,

sind "ca.-Werte".

Hierzu gehören die "Allgemeinen Betriebsbedingungen"

Warennummer 36 66 42 00

Abschirmung und Halterung für Nenngröße 38:

Hersteller: Gebr. Kleinmann, Berlin-Lichtenberg, Weitlingstraße 70

Bezugsmöglichkeiten für Empfängerröhren im Bereich der Deutschen Demokratischen Republik: Direktverkehr mit den Betrieben der volkseigenen und ihr gleichgestellten Wirtschaft; Für Handelsorganisationen, Privatbetriebe und Reparaturwerkstätten über die DHZ-Niederlassungen Elektrotechnik.

Exportinformation: DIA Deutscher Innen- und Außenhandel, Elektrotechnik, Berlin C 2, Liebknechtstraße 14 — Telegramme: Diaelektro — Ruf: 517283, 517285/86 oder

Exportbüro für Elektronenröhren der Röhrenwerke der DDR, Berlin-Oberschöneweide, Ostendstroße 1-5 – Telegramme: Oberspreewerk – Ruf: 63 65 84 – Fernschreiber: WF Berlin 1302.

Ausgabe Dezember 1956

Änderungen vorbehalten