

HIGH-MU TRIODE

"Premium" Subminiature Type
TENTATIVE DATA

RCA-5719 is a high-mu subminiature triode of the heater-cathode type designed primarly for use as an audio amplifier in mobile and aircraft

receivers where dependable performance under shock and vibration is a prime consideration. In audio service as a resistance-coupled amplifier, it is capable of providing high voltage gain.

The 5719 features a pure-tungsten heater to give long life under conditions of frequent on-off switching, and a compact design in which special attention has been given to structural details which provide increased mount strength against shock and vibration and reduced microphonic output. In addition, each tube is manufactured under rigid controls and undergoes rigorous tests to insure long

Actual Size

and dependable performance.

The 5719 supersedes the 5898.

GENERAL DATA

Electrical:	E١	ect	tri	ca	١:
-------------	----	-----	-----	----	----

Heater, for Unipoten			
Voltage (AC or DC)			volts
Current			ampere
Direct Interelectrod	e Capacitances	:	
	With Exter-	Without Exter-	
	nal Shield ^O	nal Shield	
Grid to Plate		0.8	$\mu\mu$ f
Input	1.9	1.7	μμf
Output	2.2	0.6	$\mu\mu$ f

O Having inside diameter of 0.405" and connected to cathode.

Characteristics, Class A, Amplifier:

Plate Supply Voltage	100	150	volts
Cathode Resistor	1500	680	ohms
Amplification Factor	70	70	
Plate Resistance	41000	30500	ohms
Transconductance	1700	2300	μπ⊪hos
Plate Current	0.73	1.85	ma
Grid Volts (Approx.)			
for plate current			
of 10 µamp	-2.5	-3.8	volts

Mechanical:

Operating Position Maximum Bulb Length Length from Button Seal to	:		٠		•		•	•	•		1-3/8*
Length from Button Seal to (Excluding tip). Diameter	:	:	:	: :	:	:	٠.	383		±	0.017" . T-3
Length					•	•	1-	1/2	" t	0	1-3/4"

AMPLIFIER - Class A.

Maximum Ratings, Absolute Values:

PLATE VOLTAGE		165	max.	volts
GRID VOLTAGE		-55	max.	volts
PLATE CURRENT	•	3.3	max.	ma
PLATE DISSIPATION		0.55	max.	watt
PEAK HEATER-CATHODE VOLTAGE:				
Heater negative with respect				
to cathode		200	max.	volts
Heater positive with respect				
to cathode	•	200	max.	volts
BULB TEMPERATURE (At hottest point				0
on bulb surface)		250	max.	°c

Typical Operation as Resistance-Coupled Amplifier:

See Chart on Page 2

Maximum Circuit Values:

Grid-Circuit Resistance:				
For cathode-bias operation				
For fixed-bias operation .			Not recommende	đ

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN*

	Note	Min.	Max.	
Heater Current	1	0.138	0.162	amp
Grid-to-Plate Capacitance.	2	0.6	1.0	$\mu\mu$ f
Input Capacitance	2 2 2	1.2	2.2	$\mu \mu f$
Output Capacitance	2	0.4	0.8	$\mu\mu$ f
Amplification Factor	1,3	60	80	
Plate Current	1,3	0.5	0.9	ma
Plate Current	1,4		50	μamp
Transconductance	1.3	1400	2000	µmhos
Transconductance	5,3	1300	-	μπhos
Grid Current	1.6	-	±0.3	μ amp
чеater-Cathode Leakage				
Current:				
Heater negative with			7 0	
respect to cathode Heater positive with	1,7	-	7.0	μ amp
respect to cathode	4 7	_	7.0	μamp
Leakage Resistance:	1,7	_	7.0	pump
Between Grid and All				
Other Electrodes Tied				
Together	1.8	100	_	megohms
Between Plate and All	1,0	100		
Other Electrodes Tied				
Together	1,9	100	-	megohms
9	- •			•

^{*} Each tube is stabilized before characteristics testing by continuous operation for at least 45 hours at room temperature and with dissipation values equivalent to life test conditions.

Note 1: With 6.3 volts ac or dc on heater.

Note 2: Without external shield.

Note 3: With plate supply voltage of 100 volts, cathode resistor of 150 ohms, and cathode bypass capacitor of 1000 microfarads.

Note 4: With dc plate voltage of 100 volts, and dc grid voltage of -2.5 volts.

Note 5: With 5.7 volts ac or dc on heater.

Note 6: With plate supply voltage of 100 volts, cathode resistor of 1500 ohms, cathode bypass capacitor of 1000 microfarads and grid resistor of 0.1 megohm.

Note 7: With 100 volts dc between heater and cathode.

Note 8: With grid 100 volts negative with respect to all other electrodes tied together.

Note 9: With plate 300 volts negative with respect to all other electrodes tied together.

SPECIAL RATINGS & PERFORMANCE DATA

Shock Rating:

Fatigue Rating:

Vibrational Acceleration 2.5 max. g
Tubes are rigidly mounted and subjected in each of
three positions to 2.5 g vibrational acceleration at
25 cycles per second for 32 hours.

Uniform Acceleration Rating: 1000 max.

Tubes are subjected in each of three positions to a gradually applied uniform acceleration up to 1000 g.

Low-Frequency Vibration Performance:

RMS Output Voltage 25 max. mv Under the following conditions: A 150-volt plate voltage supply having an impedance not exceeding that of a 40 μ f capacitor, plate load resistance of 10000 ohms, grid resistor of 0.1 megohm, cathode resistor of 1500 ohms, cathode bypass capacitor of 1000 μ f, and vibrational acceleration of 15 g at 40 cps.

Heater-Cycling Life Performance:

Cycles of Intermittent Operation . . 2500 mln. cycles Under the following conditions: With heater voltage of 7.0 volts cycled 1 minute on and 4 minutes off, heater—cathode voltage of 140 volts (rms), and plate and grid voltage = 0 volts.

Average Life Performance:

The average life performance based on a 500-hour test at 175°C ambient temperature is not less than 450 hours. This life test is made on sample lot of tubes with heater voltage of 6.3 volts; plate supply voltage of 100 volts; dc heater-cathode voltage (heater positive with respect to cathode) of 200 volts; cathode resistor of 1500 ohms; and grid resistor of 1 megohm.

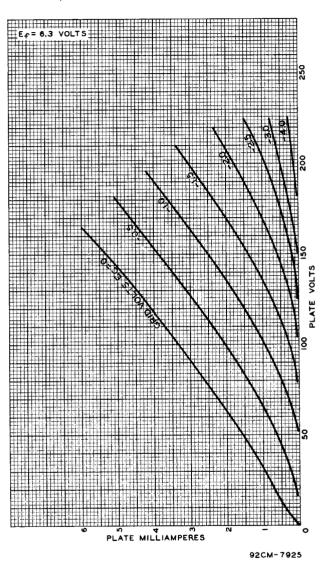
The 500-hour end-point limits for the 5719 with heater voltage of 6.3 volts, plate supply voltage of 100 volts, cathode resistor of 680 ohms bypassed by capacitor having a maximum reactance of 3 ohms, and dc heater-cathode voltage of 100 volts with heater either positive or negative with respect to cathode are: transconductance, 1000 micromhos minimum; heater-cathode leakage current, 20 microamperes maximum; and grid current, +0.9 microampere maximum or -0.9 microampere maximum

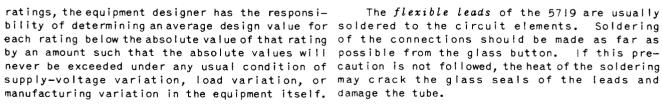
OPERATING CONDITIONS AS RESISTANCE-COUPLED AMPLIFIER Cathode-Bias Operation

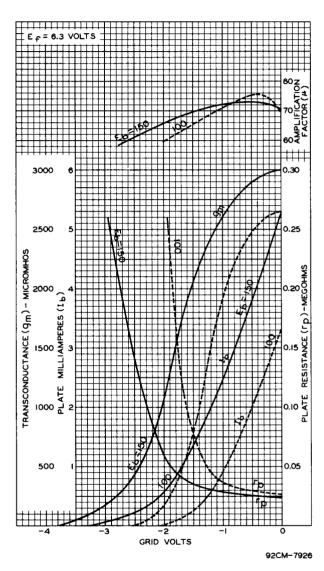
Plate Supply Voltage				100					2	00			volts
Plate Load Resistor	0.1	0.1	0.27	0.27	0.47	0.47	0.1	0.1	0.27	0.27	0.47	0.47	megohm
Grid Resistor (of					1		İ						
following stage)	0.27	0.47	0.47	1.0	0.47	1.0	0.27	0.47	0.47	1.0	0.47	1.0	megohm
Cathode Resistor	2700	2700	5600	6800	10000	10000	1500	1800	3300	3900	5600	6800	ohms
Signal Input Volts (rms)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	volt
Output Volts (rms)	3.7	3.9	4.1	4.2	3.95	4.3	4.4	4.6	4.9	5.0	4.8	5.0	volts
Gain ^A	37	39	41	42	39.5	43	44	46	49	50	48	50	
Distortion	2.4	2.1	2.1	1.8	2.4	1.7	0.7	0.7	0.9	0.7	0.9	0.7	per cent
Signal Input Volts (rms)*	0.20	0.20	0.20	0.26	0.20	0.25	0.51	0.61	0.50	0.59	0.49	0.64	volt
Output Volts (rms)	7.3	7.7	8.1	10.7	7.8	10.7	22	27	24.2	29	23.2	31.6	volts
Gain♣	36.5	38.5	40.5	41.2	39	42.8	43.1	44.3	48.4	49.2	47.3	49.4	
Distortion	5.0	4.5	4.3	4.9	5.0	4.5	3.9	5.0	4.5	4.5	5.0	5.0	per cent

Zero-Bias Operation

Zero-Bras Operation													
Plate-Supply Voltage				100			1		2	00			volts
Plate Load Resistor	0.1	0.1	0.27	0.27	0.47	0.47	0.1	0.1	0.27	0.27	0.47	0.47	megohm
Grid Resistor (of following stage)	0.27	0.47	0.47	1.0	0.47	1.0	0.27	0.47	0.47	1.0	0.47	1.0	megohm
Signal Input Volts (rms)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	vo1t
Output Volts (rms)	3.8	4.0	4.3	4.55	4.2	4.55	4.7	4.9	5.35	5.4	5.2	5.4	volts
Gain≜	38	40	43	45.5	42	45.5	47	49	53.5	54	52	54	
Distortion	2.2	2.0	1.9	1.6	2.1	1.6	0.4	0.4	0.8	0.7	0.9	0.7	per cent
Signal Input Volts (rms)*	0.2	0.21	0.22	0.26	0.2	0.27	0.59	0.63	0.54	0.65	0.5	0.63	vol t
Output Volts (rms)	7.25	7.9	8.95	11	7.9	11.3	25	27.7	25.8	31.5	23.5	30.5	volts
Gain≜	36.2	37.6	40.6	42.4	39.5	41.8	42.4	43.9	47.7	48.5	47	48.4	
Distortion	5.0	4.8	4.9	4.8	4.8	5.0	4.9	5.0	4.9	5.0	5.0	4.8	per cent

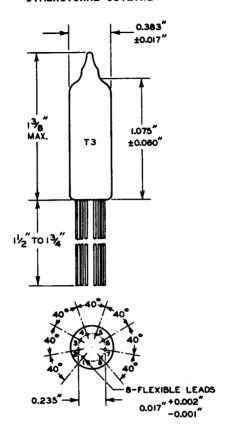

- Note 1: Coupling capacitors should be selected to give desired frequency response. Cathode resistor should be adequately bypassed.
- Maximum value to swing the grid of resistance-coupled amplifier tube to the point where its grid starts to draw current.
- A Ratio of signal output to signal input.


OPERATING NOTES


The maximum ratings in the tabulated data for the 5719 are limiting values above which the serviceability of the 5719 may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute

The heater supply should be well regulated because life and reliability of the 5719 are adversely affected by departures from the 6.3volt value. The extent to which life is affected is a function of the amounts of these departures and their durations.

Average Plate Characteristics of Type 5719.



Average Characteristics of Type 5719.

The flexible leads of the 5719 are usually possible from the glass button. If this pre-

DIMENSIONAL OUTLINE

FLEXIBLE LEAD CONNECTIONS

LEAD NO.1: GRID

LEAD NO. 2: NO CONNECTION

LEAD NO.3: HEATER

LEAD NO.4: NO CONNECTION

LEAD NO.5: CATHODE

LEAD NO.6: HEATER

LEAD NO.7: NO CONNECTION

LEAD NO.8: PLATE

Devices and arrangements shown or described herein may use patents of RCA or others. Information contained herein is furnished without responsibility by RCA for its use and without prejudice to RCA's patent rights.