TUNG-SOL

PRODUCT BULLETIN

INDUSTRIAL ELECTRON TUBE TYPE 7590

JANUARY 1963

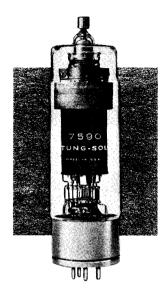
CROWBAR THYRATRON

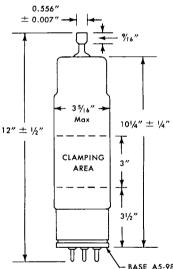
The 7590 is a zero bias hydrogen thyratron designed to pass high currents in "crowbar" protective circuits. As described in the application notes, destructive arc currents are short circuited by the crowbar tube before damage occurs to other tubes or circuit elements.

The instantaneous response, and ability to repeatedly carry extremely large currents, makes the hydrogen thyratron particularly attractive for this application. One type 7590 can handle a peak current of 1000 Amperes at 30 Kilovolts. This tube contains a fast warmup hydrogen reservoir which promotes long life and permits optimum gas pressure adjustment for various conditions of operation.

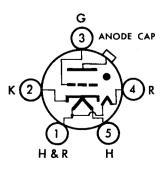
ELECTRICAL DATA

	Minimum	Bogey	Maximum	
Cathode Heater Voltage	6.0	6.3	6.6	Volts
Cathode Heater Current — Ef = 6.3 volts	12	16	22	Amperes
Cathode Heating Time	3	_	_	Minutes
Reservoir Voltage	2.5	Marked on base	5.5	Volts
Reservoir Current		_	6.5	Amperes
Reservoir Heating Time	3	_		Minutes

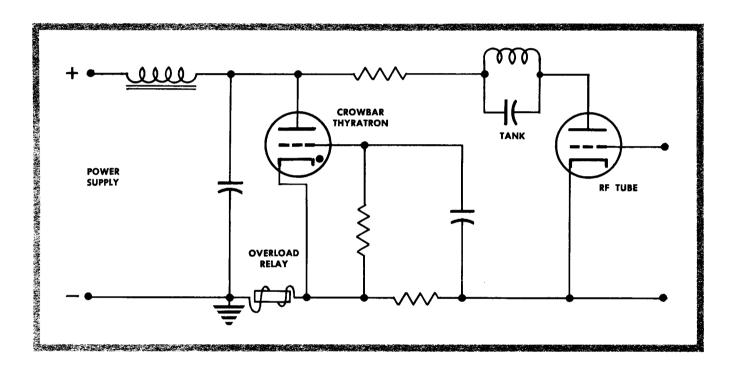

MECHANICAL DATA


Type of Cooling	Convection
Maximum Net Weight	21/4 lbs
Mounting Position	Anv
Dimensions	See Outline Drawing

MAXIMUM RATINGS - ABSOLUTE VALUES


	Minimum	Maximum	
D-C Anode Voltage			
Forward — See Note Below	10	25	Kilovolts
Inverse		15	Kilovolts
Cathode Current			
Peak			
Filter discharge period			
0 to 1.5 Milliseconds	_	1000	Amperes
		or 0.8	Coulomb
Rectifier short circuit period			
1.5 to 100 Milliseconds		25	Amperes
1.5 to 50 Milliseconds	_	50	Amperes
1.5 to 30 Milliseconds	_	85	Amperes
Average		0.5	Ampere
Conduction_Time per Fault		0.1	Second
Averaging Time		10	Seconds
Recovery Time		50	Microseconds
Grid Signal Voltage		2500	Volts
Grid Impedance	50	200	Ohms
Grid Voltage Rate of Rise	1800	_	Volts per Microsecond
Duration of Grid Signal	2		Microseconds
Anode Delay Time		0.6	Microsecond
Anode Voltage Drop		200	Volts
Ambient Temperature Range	— 55	+75	Degrees Centigrade

Note: A maximum forward voltage of 30 kilovolts will apply to a transient voltage condition wherein the duration of the transient does not exceed 2 seconds.


OUTLINE DRAWING

BASING DIAGRAM BOTTOM VIEW

APPLICATION NOTES

In a typical application, a crowbar thyratron is connected in series with a suitable impedance across the filter of the high voltage power supply for a high frequency triode oscillator. Whenever an arc occurs in the oscillator tube, the rising current is used to deliver a suitable signal to the grid of the thyratron. The thyratron immediately conducts to short circuit the power supply until the protective circuit breaker opens 0.1 second later. In this latter case, the oscillator tube is protected with a minimum interruption in operating time.

REFERENCES:

SMITH, BOB:

The Fault Diverter — A Protective Device for High-Power Electron Tubes. Report UCRL-3701 Rev. University of California, Radiation Laboratories, Berkeley, Calif.

PARKER, W. N.

and HOOVER, M. V.:

Gas Tubes Protect High-Power Transmitters. Electronics, Jan. 1956.

DOOLITTLE, H. D.:

High Powered Hydrogen Thyratrons. Cathode Press, VI, P6, 1954.

