TUNG-SOL

PRODUCT BULLETIN

INDUSTRIAL ELECTRON TUBES TYPE 7559

MARCH, 1963

CROWBAR THYRATRON

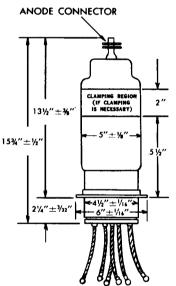
The 7559 is a zero bias hydrogen thyratron designed to pass high currents in "crowbar" protective circuits. As described in the application notes, destructive arc currents are short circuited by the crowbar tube before damage occurs to other tubes or circuit elements.

The instantaneous response, and ability to repeatedly carry extremely large currents, makes the hydrogen thyratron particularly attractive for this application. One type 7559 can handle a peak current of 1500 Amperes at 25 Kilovolts. This tube contains a hydrogen reservoir which promotes long life and permits optimum gas pressure adjustment for various conditions of operation.

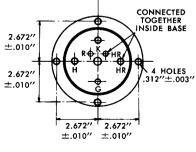
This tube was designed into some circuits under development type designation CH1096.

FIRST BROAD BATA

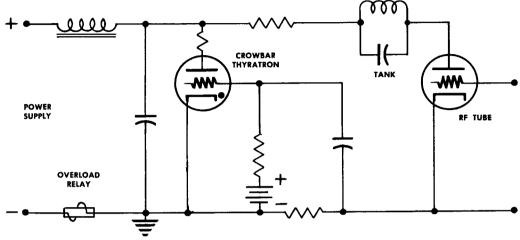
	Min	Bogey	Max	
Cathode Heater VoltageCathode Heater Current	6.0 27	6.3 30	6.6 33	Volts Amperes
Cathode Heating Time. Reservoir Voltage Reservoir Current Reservoir Heating Time.	3 2.5 — 3	Marked on base ————————————————————————————————————	5.5 6.5	Minutes Volts Amperes Minutes


RECHANGE BETA

Type Max	f Coolinget Weight	Convection 4% pounds
Moun	g Position	Vertical, Base down


PLANIANTY KATERUS - ARSOLUTE VALUES

D-C Anode Voltage Forward Inverse Cathode Current Peak	Min 5 —	Ma × 25 15	Kilovolts Kilovolts
Filter discharge period 0 to 1.5 Milliseconds	******	1500 or 1.0	Amperes Coulomb
1.5 to 100 Milliseconds	_	50 100	Amperes Amperes
Average	_	170 1 0.1	Amperes Ampere Second
Averaging Time	 + 100	10 75 + 200	Seconds Microseconds Volts
D-C Grid Bias CurrentGrid Signal Voltage	1000	10 2500	Milliamperes Volts
Grid Impedance	50 1800	200 	Ohms Volts per microsecond Microsecond
Anode Voltage Drop	50 —55	300 +75	Volts Degrees Centigrade


OUTLINE DRAWING

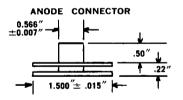
BOTTOM VIEW

APPLICATION NOTES

In a typical application, a crowbar thyratron is connected in series with a suitable impedance across the filter of the high voltage power supply for a high frequency triode amplifier. Whenever an arc occurs in the amplifier tube, the rising current is used to deliver a suitable signal to the grid of the thyratron. The thyratron immediately conducts to short circuit the power supply until the protective circuit breaker opens approximately 0.1 second later. To insure minimum anode delay time, positive bias is recommended.

References:

SMITH, BOB:
The Fault Diverter — A Protective Device for High-Power Electron Tubes. Report
Radiation Laboratories, Berkeley, Calif. UCRL-3701 Rev. University of California, Radiation Laboratories, Berkeley, Calif.


PARKER, W. N.

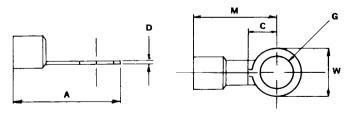
and HOOVER, M. V.:

Gas Tubes Protect High-Power Transmitters. Electronics, Jan. 1956.

DOOLITTLE, H. D.:

High Powered Hydrogen Thyratrons. Cathode Press, V1, P6, 1954.

LEAU CONNECTIONS


Lead	Function	Lead Color	Lug Color	Lug	
1	Grid	Green	Green	S	
2	Cathode & Heater C-T	Black	Black	L	
3	Heater	Yellow	Yellow	L	
4	Heater	Yellow	Black	L	
5	Reservoir	Red	Yellow	S	
6	Reservoir	Red	Red	\$	

Leads are flexible $5\frac{1}{2}$ " $\pm\frac{1}{2}$ " long from bottom of base to center of lug hole. Color coding as well as base marking identifies the leads.

Connected inside of base.

LUG	G Stud	A MAX.	W MAX.	C Min.	D	M MAX.
L	1/4"	1.21″	.53″	.41"	.04″	.94″
S	# 10	.90″	.31″	.30″	.03″	.74″

