Super-Power Klystron FIVE-RESONATOR, FIXED-TUNED, MAGNETICALLY-FOCUSED WATER-COOLED TYPE 21-MEGAWATT PEAK PULSE OUTPUT AT 2856 Mc/s For RF-Pulsed Amplifier in S-Band Linear Accelerator Service # ELECTRICAL Heater, for Matrix-Type Oxide-Coated | Unipotential Cathode | | | |---|--|---| | | 15 | ٧ | | See accompanying Electrical Considerations | | | | Current: | | | | Typical value at 15 volts | 14 | A | | Starting value, even momentarily 30 | max | A | | Cold resistance 0 | -15 | Ω | | Heating time (Minimum) | 20 1 | min | | At normal operating current before applying | | | | beam voltage | Lon T | | | Pump | 1011 | ype | | See accompanying Electrical Considerations Direct Interelectrode Capacitances | | | | | 42 | nF | | | 50 | pF | | With corona shield and in permanent magnet | 30 | Pi | | Fraguency (Center) | 856 M | c/s | | Frequency (Center) | of be | am- | | volta | ge cha | nae | | *************************************** | 3 - · · · · | | | | | | | MECHANICAL | | | | Operating Position Vertical, cathode | end d | own | | Operating PositionVertical, cathode | . 49./ | 111 | | Operating Position | . 49./ | 111 | | Operating Position | . 49.7
l Outl | ine | | Operating Position | . 49.7
l Outl
n — 14 | ine
MPT | | Operating Position | . 49.7
l Outl
n — 14 | ine
MPT | | Operating Position | . 49.7
l Outl
n — 14
n — 14 | ine
ine
MPT
MPT | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany | ine ine MPT MPT | | Operating Position | . 49.7 l Outl n — [4 n — [4 ompany l Outl | ine MPT MPT ing ine | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m | MPT
MPT
ing
ing | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w | MPT
MPT
ing
ine | | Operating Position | . 49.7
l Outl
n — 14
ompany
l Outl
73/U m
R284 w
de Fla | MPT
MPT
ing
ine
iale
ith | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w
de Fla
924-07 | ine MPT ing ine ine inge ith inge | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w
de Fla
924-07 | ine MPT ing ine ine inge ith inge | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w
de Fla
924-07
Connec | ine MPT ing ine ine inge ith inge | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w
de Fla
924-07
Connec | MPT ing ine lith inge | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w
de Fla
924-07
Connec | MPT ing ine lale ith inge itor | | Operating Position | . 49.7
l Outl
n — 14
n — 14
ompany
l Outl
73/U m
R284 w
de Fla
924-07
Connec | ine ine MPT MPT ing ine ale ith ngs ith | # THERMAL | | TH | IERMA L | | |---|--|--|--| | All other metal Ambient Oil Tempe Electron-gun-as Window Band Tempe Through 10-32 N cover to accor | ve on cathode
surfaces.
erature
ssembly bath
erature
NF tapped hol
modate therm | e in window | 150 max °C | | | | | imensional Outline | | Oil Immersion | | | | | The tube must shown on the Du sufficient volu assembly to a with high insulent, must be u water Cooling Water cool The water flow in order to pur for several min of the water f. | be lowered dimensional On the to limit temperature ating propersed. ing of the impust start bege the syste utes after room with the | into an oil butline. The oi
the surface of
below 100°C.
rties, such as
internal struct
efore application
of bubbles are
emoval of voltage | embly is required. ath to the level 1 bath must be of the electron gun Transformer oil GE10Cb or equivature is required. ton of any voltage and should continue age. Interlocking is recommended to equate water flow. | | | | Absolute | Max. Pressure | | For Collector | Typ. | Min. | Differential | | Dissipation | Flow | Flow | for Typ. Flow | | kW | gpm | q pm | Dsi | | of 78 | 11 | 10 | 30 | | Resistivity of
Water temperatu
Max. water pres | water at 25º
ire at outlet | C | . I min MΩ-cm
. 70 max °C
. 100 max psi | | | PULSED RE | AMPLIFIER | | | | Absolute-Ma | ximum Ratings | | | seconds | in any 2700 | "ON" time of 3
-microsecond a
pressure of 10 | interval, | 260 kV 50 kV 68 270 Peak Beam Voltage^c. . . . Peak Inverse Beam Voltage . Peak Input Beam Power . . . Average Input Beam Power. . . Peak Beam Current . . . # Typical Operation With rectangular waveshape pulses, rf pulse duty factor of 0.0009, rf pulse duration of 2.5 μs centered within a dc pulse duration of 3.2 μs , and at a frequency of 2856 Mc/s. | Peak Beam Voltage
Peak Beam Current .
Driving Power Output
At peak of pulsed | | | | : | | : | | | | | 250 | 200
170
150 | kV
A
W | |---|-----|----|----------|---|---|---|---|---|---|---|-----------------|--------------------|--------------| | Useful Power Output . At peak of pulse | | | | | | • | : | : | : | : | 21 ^e | 12 ^e | MW | | Power Gain | | | | | | | | | | | 53 | 49 | dB | | By heater magnetic
By change in beam w
Amplitude Modulation.
By noise and heater | /ol | t: | ige
• | : | : | : | : | : | | | 6 | 0.1
5.5
0.05 | deg
deg/% | ## Maximum Circuit Value | Load | VSWR | ٠ | ٠ | ٠ | ٠ | • | • | •, | • | • | ٠ | ٠ | ٠ | • | • | ٠ | • | • | • | • | ٠ | | | | 1.5:1 | | |------|------|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--|--|-------|--| |------|------|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--|--|-------|--| - a Varian Associates, 611 Hansen Way, Palo Alto 2, Calif. - b Manufactured by General Electric Co. - The magnitude of any spike on the beam voltage pulse should not exceed its peak value by more than 5%, and the duration of the spike when measured at the peak value level should not exceed 0.15 µs. - Input VSWR at the tube input connection must not exceed 1.5:1. - e At a load VSWR not exceeding 1.2:1. The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section. - f See Cooling Considerations Liquid Cooling. For more detailed information on cooling systems see Application Guide for RCA Super Power Tubes, ICE-279A. A copy of this guide may be obtained by writing to RCA, Commercial Engineering, Harrison, N.J. - g See Classes of Service. # CHARACTERISTICS RANGE VALUES | | Note | Min | Max | | |--|------|-----------|-----------|---| | Heater Current | . I | 13
237 | 15
263 | A | | Note 1: With 15 volts as on do on hoston | | | | | Note 1: With 15 volts ac or dc on heater. Note 2: With beam voltage of 250 kilovolts. # ... # ACCESSORIES For RCA-8568 SUPER-POWER KLYSTRON The following tabulated accessories are shown in position on the accompanying Assembly Drawing Outlet Water Pipe X-radiation Shield | KCA Type No. | Description | |--------------|---| | AJ2106 | Set of X-radiation Shields (Includes AJ2107 through AJ2113) | | AJ2107 | Upper Collector X-radiation Shield | | AJ2108 | Lower Collector X-radiation Shield | AJ2109 | RCA Type No. | Description | |--------------|---| | AJ2110 | Window X-radiation Shield | | AJ2111 | Waveguide X-radiation Shield | | AJ2112 | Inlet Water Pipe X-radiation Shield | | AJ2113 | Aluminium "Spool" Casting X-radiation Shield | | AJ2114 | Permanent Magnet | | AJ2115 | Corona Shield | | AJ2116 | Sputter-Ion-Pump Magnet and Bracket Assembly | | AJ2117 | Electromagnet | | AJ2119 | Aluminum Waveguide-Flange Gasket | | AJ2120 | Copper Waveguide-Flange Gasket | | AJ2121 | Male Waveguide Flange | | AJ2122 | O-ring, uniform dash number 441 Buna N | | AJ2123 | Waveguide-Flange Hardware (Includes 10 sets of $3/8$ - 16×2 - $1/4$ hex head bolts, $3/8$ - 16 nuts, and $0.625 \text{ OD} \times 0.390 \text{ ID} \times 1/16 \text{ washers})$ | # OPERATING CONSIDERATIONS ELECTRICAL ## X-Radiation Warning Because the 8568 is designed to be operated at peak voltages as high as 260 kilovolts, shielding of the tube for X-radiation is necessary to protect against possible injury to operating personnel. A set of X-radiation shields to reduce X-radiation to a level not to exceed 3 milliroentgens/hour at a distance of 36 inches from the major tube axis is available as an accessory, RCA-AJ2106. The shields are available individually or in a set. # Heater Voltage The life of the cathode can be conserved by adjusting to the lowest heater supply voltage that will give the desired performance. In a klystron, however, the heater voltage must not be reduced to a level that will cause an excessive reduction in beam current; otherwise, the cathode may be damaged. A recommended procedure for adjusting heater voltage during life for maximum life expectancy is as follows: - 1. Set the heater voltage at the recommended value. - Set the beam voltage at the maximum operating voltage during adjustment. - Reduce the heater voltage in 0.5-volt steps with 20-minute stabilization periods between each step. - 4. Monitor the beam current continually. ### CAUTION With the beam voltage held constant, the beam current must never drop more than three amperes. If the three-ampere drop is exceeded, TURN OFF BEAM VOLTAGE IMMEDIATELY. - Lower the heater voltage until the beam current is reduced two amperes. - 6. Increase heater voltage approximately ten percent of the minimum value of heater voltage noted in step 5 above. If the heater voltage supply is regulated, increase heater voltage approximately five percent of the minimum value of heater voltage noted in step 5 above. # Sputter Ion Pump The sputter ion pump on the 8568 is a variant of the RCA-VC2119; the only difference is in the vacuum system connection. The RCA-VX2201 Control Unit is a power supply designed especially for the VC2119 Series sputter ion pumps. # PM Magnetic Field For applications using permanent-magnet-focused 8568's, care must be taken that the magnetic field is not distorted by effects of other ferromagnetic materials. In general, such materials should be located at least three feet from the magnet. ### MECHANICAL ### Handling Raise the tube and magnet by using a hoist attached to three eyebolts on the top flange of the magnet, or by three eyebolts which can be screwed into the 1/2"-13 tapped holes located on the top flange of the aluminum "spool" casting. See Dimensional Outline for eyebolt locations. #### CAUTION # Do not rest the tube on the corona shield or heater contact. Rest the tube in an appropriate stand on the lower side of the bottom flange of the aluminum "spool" casting. The tube can also rest on the three locating "buttons" when so equipped. ### Mounting For equipment design, the tube is mounted by resting the lower side of the bottom flange of the aluminum "spool" casting on the focusing magnet. ### Connections The output waveguide of the 8568 contains an rf window to close the vacuum envelope of the tube. #### CAUTION External pressure (load side) applied to the rf window must not exceed 10^{-7} Torr during operation, otherwise the tube may be damaged. In certain cases, it may be desirable to pressurize rather than evacuate to load side of the window to prevent damage to the tube. The window must be kept clean of any foreign material. When the load waveguide is not connected to the tube, the plastic cover supplied for shipping should be used to cover the tube waveguide flange. A male waveguide flange, RCA-AJ2121, a non-reusable gasket, RCA-AJ2119 (aluminum) or RCA-AJ2120 (copper), and ten sets of nuts, bolts, and washers, RCA-AJ2123, can be used to provide a vacuum-tight waveguide seal. The nuts should be evenly tightened, with a torque wrench in increments of 1/8 to 1/4 turn each cycle. The final torque must not exceed 100 pound-inches. The copper gasket should be selected if the oxidation rate of the aluminum is excessive. Power supply voltage connections to the tube are made with a corona shield, RCA-AJ2115. FOR ADDITIONAL INFORMATION ON THIS TYPE, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FOR RCA SUPER POWER TUBES, 1CE-279A AVAILABLE FROM: Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey # DIMENSIONAL OUTLINE # Detail A # DIMENSIONS IN INCHES Note 1: Recommended diameter of O-ring sealing surface. Note 2: 1/2-14 external American Standard taper pipe thread (Male). Note 3: Six(6) mounting holes, 9/16 inch diameter through the 13.00-inch diameter flange. Equally spaced on a bolt circle of 11.56 inch diameter. Note 4: Three (3) holes, 1/2-13 NC, equally spaced on a bolt circle of 10.00 inches for lifting eyebolts. # ASSEMBLY DRAWING 92Lt-1012