

E. .

MAGNETRON

FORCED-AIR COOLED

Fixed Frequency: 5400 ± 20 Mc

GENERAL DATA								
Electrical:								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Mechanical:								
Dimensions and Terminal Connections: See Dimensional Outline H - Heater K - Cathode P - Anode P - Anode								
Connector (For heater termina! and heater-cathode terminal) Ucinite* No. I!5364 with built-in ca- pacitor, or equivalent								
Mounting Position Any Air Flow:								
fo Pins-An air stream should be directed along the cooling fins toward the body of the tube. The stream may be obtained from a rectangular nozzle about 3 x 1-1/2" located so that the plane through the 3 side is parallel with the plane of a cooling fin and so that the nozzle is centered on the body of the tube. Adequate flow should be provided so that the temperature of the anode block does not exceed 150°C.								
fo Heater-Cathode ferminalAdequate flow should be provided to maintain the temperature of the heater-cathode terminal below 165°C. Weight (Approx.)								
PULSED OSCILLATOR SERVICE								
Maximum and Minimum Ratings, Absolute Values:								
For Duty Cycle of 0.001 max.								
PEAK ANODE VOLTAGE								
PEAK ANODE CURRENT								
PEAK POWER INPUT								
* Manufactured by Ucinite Division of United-Carr Fastener Corporation, Newtonville 60, Massachusetts.								
For atmospheric pressures greater than 40 centimeters of mercury at 25°C. Operation at pressures lower than 40 centimeters of mercury (altitudes higher than 16000 feet) may result in arcover with consequent damage to the tube.								
MAY 1 1955 TENTATIVE DATA 1								

AVERAGE POW	VER	INPL	JT.										0.256	max.	. kwy
PULSE DURAT	ION												2.2	max.	μsec
OPERATION T	TIME	١N	ΑN	Υ											
100-MICRO)SEC	OND	IN	TEF	VAL									max.	
RATE OF RIS	SE O	E V) I T	AGE	Pi	ıl S	F.							max.	
) 80	min.	kv/μsec
ANODE BLOCK													150	max.	
HEATER-CATH													165	max.	o _C C
LOAD VOLTAG	E S	TAN	NIC	G-₩	AVE	R	ΆΤΙ	0					1.5	max.	
Tunion1 One	4		٠.,	: 4 L			٧.	. 1 4		_	٠.		1: W.		
Typical Ope	rat	i on-	- w	I CH	FC	aa									The
ii							Κć	ιτı	0	Εq	ua		io or i	_ess	Than 1.05
			Wi	t h	Du t	у	Сус	Le	G	f	ο.	000	8		
Heater Volt	tage						-							Consi	deration
Heater Volt Magnetic Fi	tage Teld					٠.			Se	e	ЭΦ	era	ting (Consi rmane	deration ent magnet
Heater Volt Magnetic Fi	tage leld	• •				٠.			Se	e	ЭΦ	era	ting (mane	ent magnet
Magnetic Fi	eld	•		•				:	Se Su	e pp	Οp. 1 i	era ed	ting (rmane gral	deration ent magnet with tube kv
Magnetic Fi Peak Anode	leld Vol	tage	· ·	Apr	rox	}			Se Su	e pp	Οφ. i	era ed	ting (by per inter 15	rmane gral	ent magnet! with tube kv
Magnetic Fi Peak Anode Peak Anode	eld Vol Cur	tage	 e (Apr	rox	: .)			Se Su	e pp	Οφ. 1 i	era ed	ting (by per integ	rmane gral	ent magnet(with tube kv amp
Magnetic Fi Pwak Anode Peak Anode Pulse Repet	Vol Cur iti	tage ren	 e (t . Rat	App	rox	:)			Se Su	e pp	Οφ. 1 i	era ed	ting (by per integ 15 13.5 400	rmane gral	ent magnet with tube kv amp cps
Magnetic Fi Peak Anode Peak Anode Pulse Repet Pulse Durat	Vol Cur Citi (ion	tage ren on f	 e (t . ?at	Apr	rox	·			Se Su	е рр	Οφ. i	era ed	ting (by per integ 15 13.5 400 2	rmane gral	ent magnet with tube kv amp cps <i>µ</i> sec
Magnetic Fi Peak Anode Peak Anode Pulse Repet Pulse Durat Maximum RF	Vol Cur Citi Ton Ban	tage ren on f	 e (t . Rat	App e.	rox	(.)			Se Su	e .	ορ. 1 i	era ed	ting (by per integ 15 13.5 400 2 1.5	rmane gral	ent magnet with tube kv amp cps <i>µ</i> sec Mc
Magnetic Fi Peak Anode Peak Anode Pulse Repet Pulse Durat	Vol Cur Citi Ton Ban	tage ren on f	 e (t . Rat	App e.	rox	(.)			Se Su	e .	ορ. i	era ed	ting (by per integ 15 13.5 400 2	rmane gral	ent magnet with tube kv amp cps <i>µ</i> sec

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	1	2.8	3.6	amp
Peak Anode Voltage	2	14	16	kv.
Peak Power Output		75	-	kw
Pulses Missing From Total	2,4	***	0.25	%
1				

Note 1: With 10.0 volts ac on heater.

Note 2: With peak anode current of 13.5 Amperes, and heater voltage reduced to 9.1 volts.

Note 3: With peak anode voltage of approximately 15 kilovolts, anode block temperature of approximately 100°C, and maximum VSWR equal to or less than 1.05.

Note 4: Pulses are considered to be missing if the energy level at the operating frequency is,less than 70 per cent of the normal value at a VSWR of 1.5, and with VSWR phase adjusted to produce maximum instability.

OPERATING CONSIDERATIONS

The waveguide output flange is designed for use with a standard i" x 2" rectangular waveguide such as that designated by RETMA as WR 187, or that having the JAN designation RG-49/U, and mates with flanges such as Airtron \blacksquare No.854626 or equivalent.

Manufactured by Airtron, Inc., Linden, N. J.

MAY 1, 1955

TENTATIVE DATA 1

It is essential that the input circuit be designed so that if arci occurs the energy per pulse delivered to the tube cannot greatly exceed the normal energy per pulse. To satisfy this requirement, it is recommended that pulsers of the discharging-network type be used.

As soon as the 6521 begins to oscillate, the heater voltage should be reduced to 9.1 volts when it is operated under the typical operating conditions shown in the tabulated data. For other operating conditions, the heater voltage (E_f) should be reduced depending on the average power input (P_i) to the tube as follows:

P _i (wat	ts)	E_f	(volts)
up to	90		10.0
90 to	130		9.9
130 to	180		9.5
180 to	220		9.1
220 to	256		8.9

DETAIL B

Reference plane I is defined as that plane against which the waveguide output flange abuts.

Reference plane II is defined as that plane perpendicular to reference plane I and touching the surface of the flange for alternate mounting.

Reference plane III is defined as that plane perpendicular to reference plane I and passing through the exact centers of holes 'A' and 'B'.

- **NOTE** 1: The axis of the heater-cathode terminal will be within the confines of a cylinder whose radius is 3/64" and whose axis is perpendicular to reference plane II at the specified location.
- **WOTE 2:** When resting on a smooth surface, this flange surface shall have a flatness such that a 0.050" thickness gauge 1/8" wide shall not enter between the two surfaces, and it shall be perpendicular to reference plane I within $\pm 2^{\circ}$.
- NOTE 3: The tolerances include angular as well as latera: deviations.
- **NOTE** 4: With the waveguide output flange resting on a plane surface, a 0.005" thickness gauge 1/8" wide shall not enter between the two surfaces.
- **NOTE** 5: No part of the tube support fastened to the flange for alternate mounting should extend within the surface of a cylinder whose radius is 3/4" and whose axis is perpendicular to reference plane II at the specified location.
- NOTE 6: These dimensions define extremities of the 0.169" internal diameter of the cylindrical heater terminal.
- NOTE 7: These dimensions define extremities of the 0.540" internal diameter of the cylindrical heater-cathode terminal.
- NOTE 8: No part of the connector device for the heater and heater-cathode terminals should bear against the underside of this lip.
- NOTE 9: The heater terminal and heater-cathode terminal are concentric within 0.010".
- NOTE 10: Connection to the anode may be made through the mounting bosses, the flange for alternate mounting, or the waveguide output flange.

(A)

TYPICAL STABILIZATION CHARACTERISTICS

OPERATING REGION

VOLTAGE STANDING-WAVE RATIO

PERFORMANCE CH

PEAK ANODE AMPERES