KL 5 Output pentode

This is a directly-heated output valve for 2 V battery receivers, delivering a reasonably high output on a very low current consumption; with 135 V on the anode, passing a current of 8.5 mA, the output is 0.52 W with 10 % distortion.

In this valve an improvement has been introduced in the form of mica dampers on the filament, which greatly reduce any tendency towards microphony; in this respect, too, therefore, the KL 5 is an extremely reliable valve. Two of these valves in a balanced circuit will deliver an output which for battery receivers is quite high, with relatively little distortion. The low filament consumption in such circuits is another important feature; with an anode potential of Dimensions in mm. 135 V, two KL 5 valves will give slightly more than I W, with about 7 % distortion, the combined filament current being only 0.2 A. The sensitivity is such that the valve can be fully excited with any normal A.F. valve, or with a pentode functioning as grid detector.

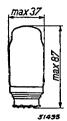


Fig. 1

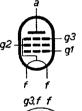


Fig. 2 Arrangement of electrodes and base connections.

FILAMENT RATINGS

Heating: direct by battery; parallel supply. Filament voltage. $V_f = 2.0 \,\,\mathrm{V}$ Filament current.

CAPACITANCES

Anode-grid $C_{\theta\theta}$ $< 0.6 \mu\mu$ F

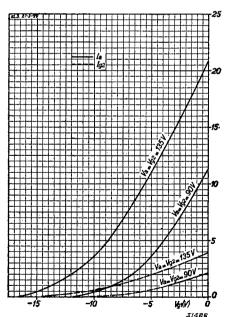


Fig. 3 Anode and screen-grid current as functions of the grid bias, with $Va = Vg_s = 135$ and 90 V.

OPERATING DATA: KL 5 used as a single output valve

Anode voltage V_a	= 90 V	135 V
Screen-grid voltage V_{g_2}	= 90 V	135 V
Grid bias V_{g_1}	= -4 V	6.5 V
Anode current I_a	= 4.8 mA	8.5 mA
Screen-grid current I_{g_2}	= 0.9 mA	1.5 mA
Mutual conductance \dot{S}	= 1.4 mA/V	1.7 mA/V
Internal resistance R_i	= 180,000 ohms	135,000 ohms
Load resistor R_a	= 19,000 ohms	16,000 ohms
Output power (10 $^{\circ}_{0}$ distortion) W_{a}	$= 0.2 \mathrm{W}$	0.53 W
Alternating grid voltage (10 $^{\circ}_{-0}$ distortion). V_{I}	$= 2.6 V_{eff}$	$4.8~\mathrm{V}_{eff}$
Sensitivity $(W_n = 50 \text{ mW})$ V_i	$= 0.7 \text{ V}_{eff}$	$0.8~\mathrm{V}_{eff}$

OPERATING DATA: KL 5 used in a balanced output stage (2 valves)

Anode voltage	V_{tt}		90 V	135 V
Screen-grid voltage	Γ_{g_2}	=	90 V	135 V
Grid bias		=	8.5 V	—12 V
Anode current (without signal)	I_{ao}	=	$2 imes 1 ext{ mA}$	$2 imes 2~\mathrm{mA}$
Anode current at max. modulation	$I_{a \text{ max}}$	==	$2 imes3.6~\mathrm{mA}$	$2 imes 6.25 \; \mathrm{mA}$
Screen-grid current (without signal)	$I_{g_{2\theta}}$	==	$2 imes 0.1 \; \mathrm{mA}$	$2 imes 0.35~\mathrm{mA}$
Screen-grid current at max. modulation .	$I_{g_2 \mathrm{max}}$	_	$2 imes 1.0 \; \mathrm{mA}$	2 imes2.4 mA
Load resistor between anodes	R_{aa}	-	25,000 ohms	25,000 ohms
Output power at max. modulation	W_o		3.5 W	1.05 W
Alternating grid voltage at maximum modu-				
lation	Γ_i	_	$6.5~{ m V}_{etf}$	$8.7~\mathrm{V}_{eff}$
Total distortion at maximum modulation.	d_{tot}	_	3.8 %	7 %

MAXIMUM RATINGS

Anode voltage	٠								V_a	=	max.	200 V
Anode dissipation									W_a	=	max.	2.0 W
Screen-grid voltage												
Screen-grid dissipation $(V_i = 0 \ V)$.												
Screen-grid dissipation ($W_o = \max$.)									W_{g_2}	=	max.	1.0 W
Cathode current									I_k	=	max.	12 mA
Grid voltage at grid current start .		(I	<i>q</i> 1	 +	- ().3	μ.	A)	V_{q_1}	==	max.	-0.2 V
External resistance between grid and												
· ·									•			

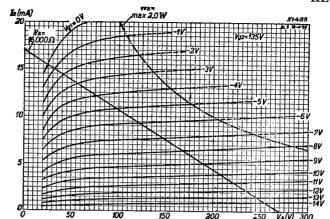


Fig. 4

Anode current as a function of the anode voltage, with grid bias as parameter, for a screen voltage of 135 V.

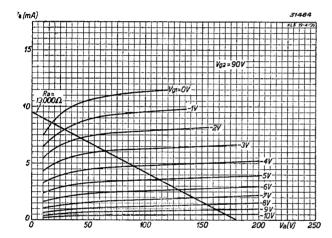


Fig. 5
Anode current as a function of the anode voltage, with grid bias as parameter, for a screen voltage of 90 V.

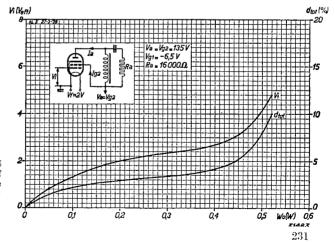


Fig. 6 Alternating grid voltage Vi and total distortion d_{tot} of the KL 5 as functions of the output power ($Va = Vg_2 = 135 \text{ V}$).

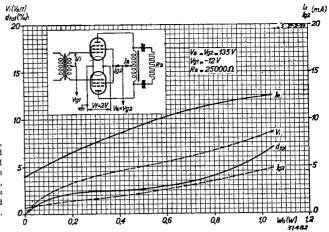


Fig. 7
Alternating grid voltage Vi, total distortion dtot, combined anode current Ia and combined screen-grid current Ig_2 as functions of the output power, for two KL 5 valves in a Class B output circuit without grid current $(Va = Vg_2 = 135 \text{ V})$.

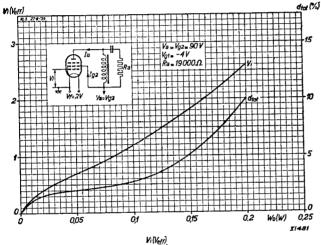


Fig. 8
Alternating grid voltage Vi and total distortion d_{lot} of the KL 5 as functions of the output power. $Va = Vg_2 = 90 \text{ V}$.

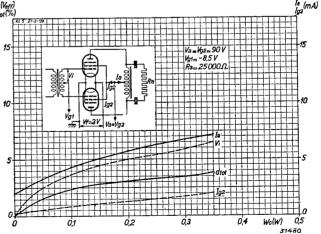


Fig. 9 Alternating grid voltage Vi, total distortion d_{tot} , combined anode current Ia and combined screen-grid current Ig_z as functions of the output power of two KL5 valves in a Class B output circuit without grid current. $Va = Vg_z = 90$ V.