AX 1 Full-wave gas-filled rectifying valve

 V_{t_1}

The AX $\bf 1$ is a full-wave gas-filled rectifying valve for use in the smaller class of amplifiers.

FILAMENT RATINGS

Heating:	direct, by	у.	Α.(C.							
Filament	voltage.										$V_f = 4.0 \text{ V}$
Filament	current.										$I_f = 2.4 \text{ A}$

MAXIMUM RATINGS

Secondary (A.C.) voltage of the power

transformer on no load

D.C. output	$I_o =$	max. 125 mA
Voltage drop in the valve	$V_{arc} =$	max. 15 V
Capacitance of the capacitor across the		
input of the smoothing circuit	C =	max. 64 μF
When a capacitor is connected across	the input	of the smoothing
circuit:		
The ohmic resistance in the D.C.		
eircuit, with $C=64~\mu\mathrm{F}$	$R_t =$	min. 200 ohms
The ohmic resistance in the D.C.		
circuit, with $C=32~\mu\mathrm{F}$	$R_t =$	min. 150 ohms
The ohmic resistance in the D.C.		
eigenit with $C = 10 \mu \text{F}$	R. =	min. 100 ohms

Fig. 1 . Dimensions in mm.

= max. $2 \times 500 V_{eff}$

Fig. 2 Arrangement of electrodes and base connections

KEY TO SYMBOLS

The ohmic resistance R_t in the D.C. circuit, when the smoothing circuit commences with a capacitor, constitutes the ohmic resistance of the secondary winding of the transformer together with that of the transformer primary, i.e. $R_t = R_s + n^2 R_p$. If the first component of the smoothing circuit is a choke, however, this resistance value must be augmented to the extent of the ohmic resistance of that choke:

 $R_t = R_L + R_s + n^2 R_p$. The voltage delivered may be calculated from the expression: $V_o = 0.45 \ V_{tr} - I_o R_t - V_{arc}$, in which V_{tr} is the effective alternating voltage of the secondary winding of the transformer, for example $V_{tr} = 2 \times 500 \ \text{V}$. The induct-

ance of the choke should be at least equal to $\frac{R_a}{1,000}$ or $\frac{V_o}{V_i}$ (V_o in volts and I_o in mA),

where I_0 is taken to be the lowest value occurring; in an amplifier having two output valves in a balanced output stage, this will be the current flowing in the amplifier without excitation. From this it will be seen that with a 12-henry choke, the characteristics begin to flatten out only at $I_0 = 30$ mA approx. At lower current values the loading curves rise steeply, owing to the effect of the smoothing capacitor. A choke having a higher inductance will produce straight characteristics down to lower current values, for instances 42 henries — 10 mA.

Fig. 4 shows the loading characteristics of the AX 1 used in a circuit in which a capacitor is the first smoothing element, and comparison of these with the corresponding curves for a high vacuum valve such as the AZ 4 shows clearly that the former are

very much flatter with a low value of the internal resistance R_t ; also that the direct voltage is higher for the same alternating input. The direct voltages obtained from a smoothing circuit in which a capacitor is the first component are, further, higher than those in a circuit containing a choke as the first smoothing element.

Fig. 3 Loading curves (D.C. voltage as a function of the current delivered) for various values of the resistance $Rt = (R_L + Rs + n^2 Rp)$, in a smoothing circuit commencing with a choke. The voltages at lower current values wih a choke of 12 or 42 henries are shown by broken lines.

Fig. 4
Loading curves (D.C. voltage as a function of the delivered current) for various values of the total resistance $Rt = (Rs + n^2Rp)$, in a smoothing circuit commencing with a capacitor.