HILIPS

Combined high slope FRAME GRID TRIODE AND R.F. PENTODE for use as frequency changer in V.H.F. television tuners

HEATING

Indirect by A.C. or D.C.; series supply

Heater current $I_{f} = 0.3 A$

Heater voltage Vr = 8.5 V

Base: NOVAL (Dimensions in mm)

CAPACITANCES

Pentode section (with external shield)

Grid No.1 to all other elements except anode = 6.2 pFCg1

Anode to all other elements ex-Ca cept grid No.1 3.5 pF

Cag1 = 0.009 pFAnode to grid No.1 < 0.012 pF

Grid No.1 to grid No.2 $C_{g_1g_2} =$ 1.5 pF

Triode section

Anode to grid

Grid to all other elements 3.3 pF except anode Cg

Anode to all other elements Са 1.7 pF except grid 1.8 pF

Between pentode and triode sections

Pentode anode to triode anode CaP-aT < 0.025 pF

Pentode anode to triode grid CaP-gT < 0.010 pF Pentode grid to triode anode < 0.010 pF

Cg1P-aT

Cag ≖

PCF801

PHILIPS

TYPICAL CHARACTERISTICS						
Pentode section						
Anode voltage	٧a	=	170	V		1
Grid No.2 voltage	Vg2	=				
Grid No.1 voltage	Vg1	=	-1.2	٧		
Anode current	Ia	=	10	m.A.		
Grid No.2 current	Ig2	=	3	mА		
Mutual conductance	s	=	11	ma/V		
Internal resistance	Ri	>	350	kΩ		
Amplification factor of grid No.2 with respect to grid No.1	^μ g2g	, =	55			
Equivalent noise resistance	Req	=	1.5	kΩ		
(Grid No.1 current	Igt	=	+0.3	μA		
Negative grid No.1 voltage	-Vg1	₹	1.3	V		
	٠.					
<u>Triode section</u>						
Anode voltage	Va 	=				
Grid voltage	٧g	#	-3			
Anode current	Ia	=	-	mA.		
Mutual conductance	S	=		ma/V		
Amplification factor	μ	=	20			
(Grid current	$I_{\mathbf{g}}$	=	+0.3	μÅ		
Negative grid voltage	-Vg	₹	1.3	V		
OPERATING CHARACTERISTICS of the triode section as oscillator						
Anode supply voltage	v_{ba}	=		200		٧
Grid resistor	$R_{\mathbf{g}}$	=		10		kΩ
Anode resistor	Ra	=	8.2		12	kΩ
Oscillator voltage	Vosc	=	4.5		3.3	V(RMS)
Anode current	Ia	=	16		12	mA.
Effective mutual conductance 1)	Seff	=	3.7		3.7	mA/V
1) Without higher harmonics						

PHILIPS

PCF801

OPERATING CHARACTERISTICS of	the pentode	section as	mixer
Anode supply voltage	v _{ba} =	200	V
Grid No.2 supply voltage	V _{bg2} =	200	٧
Grid No.2 resistor	Rg2 =	27 1	kΩ
Anode resistor	Ra = 2.7	4.71	kΩ
Grid No.1 supply voltage	$V_{bg1} = -1.2$	7.0	V
Grid No.1 resistor	Rg1 = 0.1	1 1	МΩ
Oscillator voltage	V _{osc} = 1.6	1.6	v(RMS)
Anode current	$I_a = 10$	9 r	mA.
Grid No.2 current	$I_{g_2} = 3.0$	2.8 1	mA.
Grid No.1 current	$I_{g1} = 10$	2.3	μΑ
Conversion conductance	$S_C = 5$	4.7	mA/V
OPERATING CHARACTERISTICS of amplifier	the pentode	section as	3 I.F.
Anode supply voltage	V _{ba} =	200	V
Grid No.2 supply voltage	$v_{bg2} =$	200	v
Grid No.2 resistor	Rg2 =	27	kΩ
Anode resistor	$R_a = 2.7$	4.7	kΩ
Grid No.1 supply voltage	$V_{bg1} = -1.2$	0 '	V
Grid No.1 resistor	$R_{g_1} = 0.1$	1 1	MΩ
Anode current	$I_a = 10$	12.5	mA
Grid No.2 current	$I_{g_2} = 3.0$	3.7	mA
Mutual conductance	S = 11	14 1	mA/V
Input resistance at 50 Mc/s	r g1 = 10	10 1	kΩ
(Grid No.1 voltage	$v_{g_1} = -12$	- 1	٧
Mutual conductance	S = 0.11	- 1	mA/V

PCF801

PHILIPS

```
LIMITING VALUES of the pentode section (Design centre limits)
 Anode voltage in cold condition
                                        Va<sub>o</sub>
                                             = max.
                                                      550 V
 Anode voltage
                                        ٧a
                                             = max. 250 V
 Anode dissipation
                                        Wa
                                             = max. 2.0 W
 Grid No.2 voltage in cold
                         condition
                                        V_{g20} = max. 550 V
 Grid No.2 voltage
                                       V_{g2} = max. 250 V
 Grid No.2 dissipation
                           < 1.5 V
                                       W_{g2} = max. 0.45 W
         at -V<sub>21</sub>
         at 1.5 V < -Vg1 < 2 V
                                        W_{g_2} = \max . 0.4 W
                            >
                                2 V
         at -Vg1
                                        W_{g_2} = \max. 0.3 W
 Negative grid No.1 voltage
                                      -V_{g_1} = \max. 50 V
 Grid No.1 resistor with fixed
                                             = max.
                                                       1 MΩ
                                       R_{g_1}
 Grid No.1 resistor with
                    automatic bias
                                       Rg<sub>1</sub>
                                             = max. 2.2 MΩ
 Cathode current
                                       I_{\mathbf{k}}
                                             = max.
                                                      18 mA
 Voltage between heater and
                                       V_{kr} = \max_{i} 100 \text{ V}^{1}
                           cathode
LIMITING VALUES of the triode section (Design centre limits)
 Anode voltage in cold condition
                                                     550 V
                                       V_{a_0} = \max_{\bullet}
 Anode voltage
                                       ٧a
                                             = max.
                                                    125 V
Anode dissipation
                                       Wa
                                            = max. 1.5 W
                                      -V<sub>e</sub>
Negative grid voltage
                                            = max.
                                                     50 V
Grid resistor
                                       R_{\mathbf{g}}
                                            = max. 0.5 MΩ
Cathode current
                                       I_k = max. 20 mA
 Voltage between heater and
                           cathode V_{kf} = max. 100 V^{-1}
```

To fulfil the modulation hum requirements in intercarrier receivers, the voltage between heater and cathode should not exceed 100 V (RMS)

With respect to modulation hum in A.M. sound receivers the voltage between heater and cathode should not exceed 50 V(RMS)

	PCF801	
page	sheet	date
1	1	1962.10.10
2	2	1962.10.10
3	3	1962.10.10
4	4	1962.10.10
5	FP	2000.04.17