PHILIPS

ECF801

Combined high slope FRAME GRID TRIODE AND R.F. PENTODE for use as frequency changer in V.H.F. television tuners

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage $\frac{V_{f} = 6.3 \text{ V}}{\text{Heater current}}$ If = 0.41 A

Base: NOVAL (Dimensions in mm)

CAPACITANCES

Pentode section (with external shield)

Grid No.1 to all other elements except anode Anode to all other elements ex-

 $C_{g1} = 6.2 \text{ pF}$

Anode to all other elements except grid No.1
Anode to grid No.1

Cag = 3.5 pF Cag1 = 0.009 pF Cag1 < 0.012 pF

Grid No.1 to grid No.2

 $C_{g_1g_2} = 1.5 \text{ pF}$

Triode section

Grid to all other elements except anode

Cg = 3.3 pF

Anode to all other elements except grid

Ca = 1.7 pF

Anode to grid

 $C_{ag} = 1.8 pF$

Between pentode and triode sections

Pentode anode to triode anode Pentode anode to triode grid

Cap-aT < 0.025 pF Cap-gT < 0.010 pF

Pentode grid to triode anode Pentode grid to triode grid Cg1P-aT < 0.010 pF Cg1P-gT < 0.010 pF

ECF801

PHILIPS

TYPICAL CHARACTERISTICS						1
Pentode section						
Anode voltage	v_a	=	170	٧		
Grid No.2 voltage	v_{g_2}	=	120	V		
Grid No.1 voltage	v_{g1}	=	-1.2	V		
Anode current	I_a	=	10	m.A.		
Grid No.2 current	Ig2	=	3	mA.		
Mutual conductance	S	=	11	mA/V		
Internal resistance	R ₁	>	350	kΩ		
Amplification factor of grid No.2 with respect to grid No.1	[⊬] 8281	=	55			
Equivalent noise resistance	Req	==	1.5	kΩ		
(Grid No.1 current	Ig ₁	=	+0.3	μA		
Negative grid No.1 voltage	-Vg1	<u>≤</u>	1.3	V		
	61					
Triode section						
Anode voltage	v _a	=	100	V		
Grid voltage	v _g	=	-3	V		
Anode current	Ia	=	15	m.A.		
Mutual conductance	S	=	9	mA/V		
Amplification factor	μ	=	20			
(Grid current	$I_{\mathbf{g}}$	=	+0.3	μA		
Negative grid voltage	-Vg	₹	1.3	٧		
OPERATING CHARACTERISTICS of lator	the t	ri	ode s	ection	as	oscil-
Anode supply voltage	v_{ba}	=		200		V
Grid resistor	$R_{\mathbf{g}}$	=		10		kΩ
Anode resistor	R_a	==	8.2		12	kΩ
Oscillator voltage	Vosc	=	4.5		3.3	V(RMS)
Anode current	$I_{\mathbf{a}}$	=	16		12	mA.
Effective mutual conductance 1)	Seff	×	3.7		3.7	mA/V

¹⁾ Without higher harmonics

PHILIPS

OPERATING CHARACTERISTICS of	the pentode	section as	mixer
Anode supply voltage	V _{ba} =	200	v
Grid No.2 supply voltage	V _{bg2} =	200	v
Grid No.2 resistor	Rg2 =	27	kΩ
Anode resistor	Ra = 2.7	4.7	kΩ
Grid No.1 supply voltage	$V_{bg1} = -1.2$	0	A
Grid No.1 resistor	$Rg_1 = 0.1$	1	MΩ
Oscillator voltage	$V_{OSC} = 1.6$	1.6	V(RMS)
Anode current	$I_a = 10$	9	mA.
Grid No.2 current	$I_{g_2} = 3.0$	2.8	mA.
Grid No.1 current	$I_{g_1} = 10$	2.3	μA
Conversion conductance	Sc = 5	4.7	mA/V
OPERATING CHARACTERISTICS of amplifier	the pentode	section a	s I.F.
Anode supply voltage	V _{ba} =	200	V
Grid No.2 supply voltage	V _{bg2} =	200	V
Grid No.2 resistor	R _{g2} =	27	kΩ
Anode resistor	$R_a = 2.7$	4.7	kΩ
Grid No.1 supply voltage	$V_{bg1} = -1.2$	0	V
Grid No.1 resistor	$R_{g_1} = 0.1$	1	MΩ
Anode current	$I_a = 10$	12.5	mA.
Grid No.2 current	$I_{g_2} = 3.0$	3.7	mA.
Mutual conductance	S = 11	14	mA/V
Input resistance at 50 Mc/s	r _{g1} = 10	10	kΩ
(Grid No.1 voltage	$V_{g_1} = -12$	-	٧
Mutual conductance	S = 0.11	-	mA/V

ECF801

PHILIPS

```
LIMITING VALUES of the pentode section (Design centre limits)
 Anode voltage in cold condition
                                       ٧a٥
                                            = max.
                                                    550 V
 Anode voltage
                                       ٧a
                                            = max. 250 V
 Anode dissipation
                                       Wa
                                            = max. 2.0 W
 Grid No.2 voltage in cold
                         condition
                                      V_{g20} = max. 550 V
 Grid No.2 voltage
                                      Vg2
                                           = max. 250 V
 Grid No.2 dissipation
         at -Vg1
                          < 1.5 V
                                      W_{g_2} = \max. 0.45 W
         at 1.5 V < -Vg1 < 2 V
                                      W_{g_2} = max. 0.4 W
         at -Vg1
                               2 V
                                      W_{g_2} = \max . 0.3 W
 Negative grid No.1 voltage
                                     -Vg1
                                           = max.
                                                   50 V
 Grid No.1 resistor with fixed
                              bias
                                      R_{\alpha_1} = max.
                                                   1 ΜΩ
 Grid No.1 resistor with
                   automatic bias
                                      R_{g_1}
                                           = max. 2.2 MQ
 Cathode current
                                      I_{k}
                                           = max.
                                                   18 mA
 Voltage between heater and
                          cathode
                                      V_{kr} = \max_{i} 100 \text{ V}^{-1}
LIMITING VALUES of the triode section (Design centre limits)
 Anode voltage in cold condition
                                      V_{a_0} = max. 550 V
 Anode voltage
                                      ٧a
                                           = max. 125 V
 Anode dissipation
                                      Wa
                                           = max. 1.5 W
 Negative grid voltage
                                     -V<sub>g</sub>
                                           ≃ max.
                                                   50 V
 Grid resistor
                                      R_{\mathbf{g}}
                                           = max. 0.5 MΩ
 Cathode current
                                      I_{k}
                                           = max.
                                                   20 mA
Voltage between heater and
                          cathode
                                      V_{kf} = max. 100 V ^{1}
```

¹⁾ To fulfil the modulation hum requirements in intercarrier receivers, the voltage between heater and cathode should not exceed 100 V (RMS)

With respect to modulation hum in A.M. sound receivers the voltage between heater and cathode should not exceed 50 V(RMS)

ECF801					
page	sheet	date			
1	1	1962.10.10			
2	2	1962.10.10			
3	3	1962.10.10			
4	4	1962.10.10			
5	FP	2005.05.06			