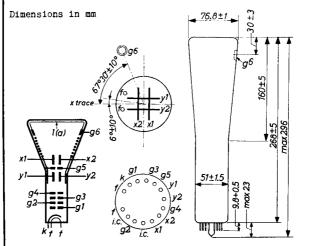
DB7-11 DH7-11 DN7-11 DP7-11

CATHODE-RAY TUBE for use in transistorized oscilloscopes with flat face and post-deflection acceleration by means of a helical electrode


SCREEN

For screen properties please refer to front of this section
Useful screen diameter 68 mm

HEATING

Indirect by A.C. or D.C; parallel supply

Heater voltage $\frac{V_f = 6.3 \text{ V}}{I_f = 95 \text{ mA}}$

The post-deflection acceleration helix is connected between g6 and the isolation shield g5.
The resistance of the helix is min. 40 MQ

Net weight with socket 370 g

Shipping weight 1100 g

DB7-11 DH7-11 DN7-11 DP7-11

PHILIPS

<u>ACCESSORIES</u>	
ACCESSORIES Socket (supplied with tube)	Type no. 40467
Mu-metal shield	Type no. 55532

CAPACITANCES

Grid No.1 to all other electrodes	Cg1	= 5.7 pF
Cathode to all other electrodes	c_k	= 3.0 pF
xmplate to all other electrodes except x2 plate	C _{x1}	= 4.0 pF
x ₂ plate to all other electrodes except x ₁ plate	Cx2	= 4.0 pF
y1 plate to all other electrodes except y2 plate	Cy 1	= 3.5 pF
y ₂ plate to all other electrodes except y ₁ plate	Cy2	= 3.5 pF
x_1 plate to x_2 plate	$c_{x_1-x_2}$	= 1.9 pF
y ₁ plate to y ₂ plate	Cy1-y2	= 1.7 pF

FOCUSING Electrostatic

<u>DEFLECTION</u> Double electrostatic; symmetrical

Angle between x and y traces 90° ± 1°

If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan; a low impedance deflection plate drive is therefore desirable in this case

Deflection factors

$$V_{g6}/V_{g4} = 1 \begin{cases} M_{X} = 17.9 - 22.8 \text{ V/cm} \\ M_{y} = 6.9 - 8.8 \text{ V/cm} \end{cases}$$

$$V_{g6}/V_{g4} = 4 \begin{cases} M_{X} = 31.3 - 40.0 \text{ V/cm} \\ M_{y} = 10.7 - 13.7 \text{ V/cm} \end{cases}$$
per kV of V_{g4}

LINE WIDTH measured with shrinking raster method

Post accelerator voltage	v_{g6}	=	1200	V
Second accelerator voltage	v_{g_4}	=	300	A
First accelerator voltage	Vg2	==	1200	٧
Beam current	$\mathbf{I}_{\boldsymbol{\ell}}$	=	10	μA
Line width	1.w.	=	0.65	mm

D87-11 DH7-11 DN7-11 DP7-11

PERATING CHARACTERISTICS	
Post accelerator voltage	Vg6 = 1200 V
Isolation shield voltage	V _{g5} = 300 ± 30 V
Second accelerator voltage	$V_{g_4} = 300(+40 \text{ or } -15) \text{ V}$
Focusing voltage	$V_{83} = 20 \text{ to } 150 \text{ V}$
First accelerator voltage	V _{g2} = 1200 V
Negative grid No.1 volt- age for visual extinction of focused spot	$-v_{g_1} = 30 \text{ to } 80 \text{ V}$
Deflection factors	
in the x direction	M _X = 9.4 to 12 V/cm
in the y direction	My = 3.2 to 4.1 V/cm
Useful scan	
in the x direction	$d_{\mathbf{X}} = 60 \text{ mm}$
in the y direction	$d_y = 45 \text{ mm}$

Deviation of the linearity of deflection

The sensitivity of each plate pair at a deflection of less than 75 % of the useful scan will not differ from the sensitivity at a deflection of 25 % of the useful scan by more than 2 %

Pattern distortion

0

max. 2 %

max. 2 %

With a raster pattern the size of which is adjusted so that the widest points just touch the sides of a square of 40.8 mm sides, no point of the pattern sides will be within a concentric square of 39.2 mm sides

Undeflected spot position

With the tube shielded the spot will be within a circle of 4_mm_radius, the circle being centred with respect to the tube face.

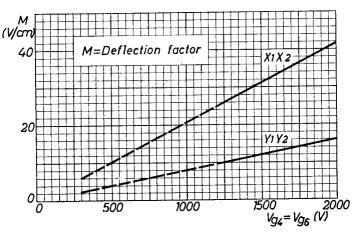
LIMITING VALUES (Des	ign centre limits)			
Post accelerator	70 Vg6	= max.		
volta	ge '80	= min.	1200	V
Isolation shield volta	mo V	= max.	2200	v
	ge V _{g5}			-
Second accelerator volta	ge ^V g ₄	= max. = min.		
Focusing voltage	v_{g_3}	= max.	1000	٧
First accelerator	ν_	= max.		
volta	ge 62	= min.	800	۷.)
Grid No.1 voltage				
negative val	ue $-v_{g_1}$	= max.	200	A
positive val	ue +Vg ₁	= max.	0	V
Voltage ratio	v_{g6}/v_{g4}	= max.	4	
Peak voltage between		= max.	500	A
grid No.4 and any deflection plate	e- Vy-g ₄ p	= max.	500	٧
Voltage between hea er and cathode	t -			
cathode positi	ve V _{kf} (k pos.)	= max.	100	A
cathode negati	ve V _{kf} (k neg.)	= max.	15	V
Screen dissipation	$\mathbf{w}_{\mathcal{L}}$	= max.	3	mW/cm^2
Cathode current	$\mathbf{I}_{\mathbf{k}}^{\mathbf{r}}$	= max.	200	μA(RMS)

CIRCUIT DESIGN VALUES

Negative grid No.1 voltage for visual extinction of focused spot Grid No.3 current

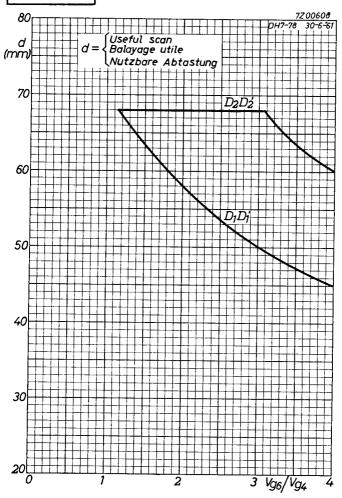
 $-V_{g1}$ = 30 to 60 V per kV of V_{g2} I_{g3} = -15 to +10 μ A²)


MAX. CIRCUIT VALUES


External grid No.1 resistance Rg1 = max. 1.5 M Ω External deflection plate resistance Rx = Ry = max. 50 k Ω

¹⁾ In order to obtain satisfactory focus quality and maximum screen current it is recommended not to apply to this electrode a voltage less than the indicated value

²⁾ For calculation of the grid No.3 voltage potentiometer these current limits must be taken into account


D87-11 DH7-11 DN7-11 DP7-11

DB7-11 DH7-11 DN7-11 DP7-11

PHILIPS

DB7-11 DH7-11 DN7-11 DP7-11

page	sheet	date
1	1	1963.02.02
2	2	1963.02.02
3	3	1963.02.02
4	4	1963.02.02
5	Α	1963.02.02
6	В	1963.02.02
7	FP	2000.09.24