PHILIPS

D13-19..

OSCILLOSCOPE TUBE with flat face, post deflection acceleration by means of a helical electrode, side contacts, metalbacked screen and high sensitivity for high frequency and high writing-speed applications

SCREEN

Туре	Fluorescence	Phosphorescence	Persistence		
D13-19BE	Blue	Blue	Medium short		
D13-19GH	Green	Green	Medium short		
D13-19GP	Green to bluish green	Green	Medium short		

Useful screen diameter min. 108 mm
Useful scan at $V_{g7}/V_{g4} = 6$ in the x direction 100 mm
in the y direction 60 mm

The useful scan may vertically be shifted max. 3 mm with respect to the geometric centre of the face plate For further screen properties please refer to front of this

section

HEATING

Indirect	ру	A.C.	or	D.C.;	parallel	supply			
					Heater v	oltage	<u>Vf_=</u>	6.3	V
					Heater c	urrent	Ir =	0.3	A

CAPACITANCES

1					
ļ	Grid No.1	to all other electrodes	Cg ₁	=	5.5 pF
	Cathode t	o all other electrodes	$c_{\mathbf{k}}$	=	3.5 pF
	x ₁ plate	to all other electrodes except x2 plate	C _{X1}	=	3.0 pF
	x ₂ plate	to all other electrodes except x_1 plate	Cx2	=	3.0 pF
		to all other electrodes except y2 plate	Cy ₁	=	3.0 pF
	y ₂ plate	to all other electrodes except y ₁ plate	Cy2	=	3.0 pF
	x ₁ plate	to x2 plate	$c_{x_1-x_2}$	=	1.9 pF
	y ₁ plate	to y ₂ plate	$c_{y_1-y_2}$	=	1.0 pF

D13-19..

PHILIPS

gs = deflection plate shield

Base: DIHEPTAL 12 p

g6 = isolation shield

The post-accelerator helix is connected between g7 and g6. The resistance of the helix is 200 to 1000 $M\Omega$

MOUNTING POSITION: any

The tube should not be supported by the base alone

ACCESSORIES

Socket 5914/20
Connector for side contacts 55561
Mu-metal shield 55551
Post accelerator contact connector 5563

NET WEIGHT 910 g Shipping weight 2300 g

- 1) Straight part of the bulb
- 2) Location of the recessed cavity button contact with respect to the x-trace

PHILIPS

D13-19..

FOCUSING electrostatic

DEFLECTION double electrostatic

x plates symmetrical y plates symmetrical

Angle between x and y traces 900 ± 10

LINE WIDTH

Post accelerator voltage $V_{g7} = 10 \text{ kV}$ Grid No.4 voltage $V_{g4} = 1670 \text{ V}$ Grid No.2 voltage $V_{g2} = 1670 \text{ V}$ Beam current $I_{l} = 10 \text{ } \mu\text{A}$ Line width 1.w. = 0.4 mm

OPERATING CHARACTERISTICS

10 kV Vg7 Post accelerator voltage $= 1670 \pm 167 \text{ V}^{-1}$ Isolation shield voltage Vg6 1670 V ¹) Deflection plate shield voltage v_{g_5} $= 1670 \pm 83 V^{-1}$ Second accelerator voltage Vg4 = 320 to 500 V v_{g_3} Focusing electrode voltage 1670 V First accelerator voltage Vg2 = $= -53 \text{ to } -82 \text{ V}^{2}$ Grid No.1 voltage Vg1

Deflection factor

horizontal $M_X = 27$ to 33 V/cm vertical $M_V = 9.5$ to 12.4 V/cm

Deviation of linearity of deflection =

ection = $\max_{g} (2 \%^{1})^{3}$ see notes $(1)^{4}$

Pattern distortion

1₁2₁3₁4₁ See page 4

PHILIPS

¹⁾ In general the voltages on g6, g5, g4 and the average potential of the deflection plates should be equal

Variation of the isolation shield voltage V_{g_6} (max.±10% of V_{g_4}) serves to correct pincushion and barrel pattern distortion

A small potential difference (max. ± 5 % of Vg4, obtained by varying Vg4) between the y plates and g4 may be desirable for obtaining optimum sharpness

²⁾ For visual extinction of the focused spot

³⁾ The sensitivity (of both x and y plate pairs separately) for a deflection of less than 75% of the useful scan will not differ more than 2% from the sensitivity for a deflection of 25% of the useful scan

⁴⁾ When, after alignment of the x trace with the horizontal centre line of the graticule, a horizontal or vertical trace is adjusted so that its geometric centre just touches one side of a rectangle of 100 mm x 60 mm which is concentric with the screen, no point of the centre of this trace will be within a concentric rectangle of 98 mm x 58.2 mm

⁵⁾ If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan; a low impedance deflection plate drive is therefore desirable

⁶⁾ Values to be taken into account for the calculation of the Vg3-potentiometer

LIMITING VALUES (Absolute lim	nits)
LIMITING VALUES (ADSOIGLE 110	= max. 12 kV
Post accelerator voltage	$V_{g7} = \min. 6 \text{ kV}$
Isolation shield voltage	Vg6 = max. 2200 V
Deflection plate shield voltage	Vg5 = max. 2200 V
1	= max. 2200 V
Second accelerator voltage	Vg4 = min. 1000 V
Focusing electrode voltage	Vg ₃ = max. 1500 V = max. 2200 V
First accelerator voltage	V _{g2} = max. 2200 V = min. 1000 V
Grid No.1 voltage	l
negative	-V _{g1} = max. 200 V
positive	$+V_{g_1} = \max \cdot 0 V$
peak positive	$+V_{g_1} p = \max. 2 V$
Ratio Vg7/Vg4	$V_{g7}/V_{g4} = max.$ 6
Peak voltage between second	$V_{g4-x} p = max. 500 V$
accelerator and any deflec- tion plate	Vg4-y p = max. 500 V
Voltage between cathode and heater	
cathode positive	Vkf(k pos) = max. 200 V
cathode negative	400 17
First accelerator	4
dissipation	/ 21
Screen dissipation	$W_{\ell} = \max. 3 \text{ mW/cm}^2$
CIRCUIT DESIGN VALUES	
Focusing voltage Vg3 =	190 to 300 V per kV of Vg4
Grid No.1 voltage 2) -Vg1 =	
Deflection factors at Vg7/Vg.	4 = 6
horizontal M _X =	16 to 20 V/cm per kV of Vg4
vertical My =	5.7 to 7.4 V/cm per kV of Vg4
Grid No.1 circuit resistance	$R_{g_1} = max.$ 1.5 MΩ
Deflection plate resistance	See note 5)
Grid No.3 current	$I_{g_3} = -15 \text{ to } +10 \mu A^6$
Ratio Vg7/Vg4	$V_{g7}/V_{g4} = 6$

See page 4

D13-19BE D13-19GH D13-19GP

D10 10DE D10 10011 D10 1001				
page	sheet	date		
1	1	1963.02.02		
2	2	1963.02.02		
3	3	1963.02.02		
4	4	1963.02.02		
5	5	1963.02.02		
6	FP	2000.01.21		