PHILIPS

D13-15..

OSCILLOSCOPE TUBE with flat face, post deflection acceleration by means of a helical electrode, side contacts, high sensitivity and metal-backed screen

SCREEN

Type	Fluorescence	Phosphorescence	Persistence		
D13-15BE	Blue	Blue	Medium short		
D13-15GH	Green	Green	Medium short		
D13-15GL	Yellowish green	Yellowish green	Medium short		
D13-15GM	Purplish blue	Yellowish green	Long		

Useful screen diameter

min. 114 mm

Useful scan at $V_{g7}/V_{g4} = 2$ and $V_{g7}/V_{g2} = 2$

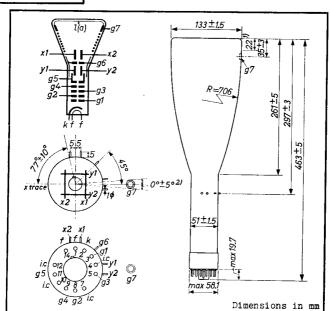
in the x direction in the y direction

min. 100 mm min. 60 mm

The useful scan may vertically be shifted max. 4 mm with respect to the geometric centre of the face plate For further screen properties please refer to front of this section

HEATING

Indirect by A.C. or D.C.; parallel supply


Heater voltage $\frac{V_{\Gamma} = 6.3 \text{ V}}{\text{If} = 0.3 \text{ A}}$

CAPACITANCES

Grid No.1 to all other electrodes	$c_{\mathbf{g}_1}$	=	6.4 pF
Cathode to all other electrodes	$c_{\mathbf{k}}$	=	3.9 pF
<pre>x₁ plate to all other electrodes except x₂ plate</pre>	Cx1	=	3.0 pF
\mathbf{x}_2 plate to all other electrodes except \mathbf{x}_1 plate	Cx2	=	3.0 pF
y_1 plate to all other electrodes except y_2 plate	С _{У1}	=	2.8 pF
y ₂ plate to all other electrodes except y ₁ plate	c _{y2}	=	2.8 pF
x_1 plate to x_2 plate	Cx1-x2	=	1.9 pF
y_1 plate to y_2 plate	с _{у1} -у2	=	1.5 pF

D13-15..

PHILIPS

g5 = deflection plate shield

ga = isolation shield

The post-accelerator helix is connected between g7 and g6. The resistance of the helix is min. 300 $M\Omega$

MOUNTING POSITION: any

The tube should not be supported by the base alone

ACCESSORIES

Socket 5914/20
Connector for side contacts 55561
Mu-metal shield 55551
Post accelerator contact connector 55563

NET WEIGHT 910 g

Base: DIHEPTAL 12 p

¹⁾ Straight part of the bulb

Location of the recessed cavity button contact with respect to the x-trace

PHILIPS

D13-15..

electrostatic FOCUSING

double electrostatic DEFLECTION

symmetrical x plates symmetrical y plates

Angle between x and y traces 90° ± 1°

LINE WIDTH

= 4000 VPost accelerator voltage 2000 V Vga Grid No.4 voltage Vg_2 2000 V Grid No.2 voltage 10 uA I f Beam current 0.5 mm Line width 1.w. =

The line width is measured with the shrinking raster method

OPERATING CHARACTERISTICS

4000 V Vg7 Post accelerator voltage $= 2000 \pm 200 V^{1}$ Isolation shield voltage Vgs $v_{g_5} = 2000 \pm 100 \text{ V}^{-1}$ Deflection plate shield voltage $= 2000 \pm 100 \text{ V}^{-1}$ ٧_{g4} Second accelerator voltage 220 to 710 V Focusing electrode voltage ۷g3 v_{g_2} 2000 V First accelerator voltage = -60 to -96 V 2) v_{g_1} Grid No.1 voltage

Deflection factor

= 21 to 26 V/cmΜ× horizontal = 5.1 to 6.7 V/cm M^{Δ} vertical

Deviation of linearity of deflection

2 % 1131 max. 1 % 1)4) max. Pattern distortion 5 mm⁵) Undeflected spot position R

⁴)⁵) See page 4

PHILIPS

- 1) In general the voltages on g6, g5, g4 and the average potential of the deflection plates should be equal
 - Variation of the isolation shield voltage $\rm V_{g6}$ (max. $\pm 10~\%$ of $\rm V_{g4})$ serves to correct pincushion and parrel pattern distortion
 - Adjustment of the deflection plate shield voltage $\rm V_{g5}$ (max. $\pm 5~\%$ of $\rm V_{g4})$ provides improved linearity of vertical deflection
 - A small potential difference (max. $\pm 5~\%$ of Vg4) between the y plates and g4 may be desirable for obtaining optimum sharpness
- 2) For visual extinction of the focused spot
- The sensitivity for a deflection of less than 75% of the useful scan will not differ more than 2 % from the sensitivity for a deflection of 25% of the useful scan
- 4) With a raster pattern the size of which is such that the widest points of the pattern just touch the sides of a rectangle of 100x60 mm, no points of the pattern sides will be within a concentric rectangle of 98x58.5 mm
- 5) With the tube shielded the spot will be within a circle of 5 mm radius, the circle being centered with respect to the tube face
- 6) If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan; a low impedance deflection plate drive is therefore desirable
- 7) Values to be taken into account for the calculation of the Vg3-potentiometer

LIMITING VALUES (Absolute limits)
Post accelerator voltage Vg7 = max. 8800 V = min. 2500 V
Isolation shield voltage Vg6 = max. 2200 V
Deflection plate shield voltage Vg5 = max. 2200 V
= may 2200 V
Second accelerator voltage $V_{g_4} = \min.1000 \text{ V}$
Focusing electrode voltage Vg3 = max. 1500 V
First accelerator voltage $V_{g2} = \max. 2200 V$
Grid No.1 voltage
negative -Vg1 = max. 200 V
positive $+V_{g_1} = \max_{x} 0 V$
peak positive $+V_{g_1p} = \max_{p} 2V$
Ratio V_{g_2}/V_{g_4} $V_{g_2}/V_{g_4} = \max_{1} 1$
Ratio V_{g7}/V_{g4} $V_{g7}/V_{g4} = max.$ 4
Peak voltage between second v_{g_4-x} p = max. 500 V
accelerator and any deflection plate v_{g4-y} p = max. 500 V
Voltage between cathode and heater
cathode positive Vkf(kpos)= max. 200 V
cathode negative Vkf(kneg)= max. 125 V
First accelerator dissipation Wg2 = max. 6 W
Screen dissipation $W_{\ell} = \max_{\ell} 3 \text{ mW/cm}^2$
CIRCUIT DESIGN VALUES
Focusing voltage Vg3 = 110 to 355 V per kV of Vg4
Grid No.1 voltage 2) $-V_{g_1} = 30$ to 48 V per kV of V_{g_2}
Deflection factors at $V_{g7}/V_{g4} = 2$
horizontal $M_X = 10.5$ to 13 V/cm per kV of V_{g4}
vertical My = 2.55 to 3.35 V/cm per kV of Vg4
Grid No.1 circuit resistance $R_{g_1} = max. 1.5 M\Omega$
Deflection plate $R_x = R_y = max.$ 5 Ma ⁶
Grid No.3 current Ig ₃ =-15 to +10 μΑ ⁷)
²) ⁶) ⁷) See page 4

D13-15BE D13-15GH D13-15GL D13-15GM

, 10 1022 2 10 10011 2 10 1002 2 10 100III				
page	sheet	date		
1	1	1963.02.02		
2	2	1963.02.02		
3	3	1963.02.02		
4	4	1963.02.02		
5	5	1963.02.02		
6	FP	2000.01.21		