The Machlett Laboratories, Inc. • 1063 Hope Street Stamford, Conn. 06907 • Tel. 203-348-7511 • TWX 203-327-2496 High Cathode-Current Capability 100W CW at 2.3 GHz ### DESCRIPTION Electrical The ML-8534 and ML-8535 are ruggedized, high-mu planar triodes of ceramic-and-metal construction, designed for use as grid-pulsed, plate-pulsed or CW oscillators, frequency multipliers, or amplifiers in radio transmitting service from low frequency to 3 GHz. The ML-8534 is supplied without a radiator for conduction-convection or heat-sink cooling. The ML-8535 is supplied with a radiator for forced-air cooling. Except for plate-dissipation ratings, the characteristics of the two tubes are the same. Distinguishing characteristics of these tubes are their min- iaturization and high cathode-current capability. In addition to low interelectrode capacitance, high transconductance and high mu, these tubes also incorporate design features which help to assure frequency-stable operation even under conditions of adverse ambient temperature and varying plate dissipation. The tubes also employ a Phormat type cathode which consists of an indirectly heated disc with an oxide coating impregnated in a nickel matrix. This construction, in combination with proper plate series impedance, reduces to a minimum failures of the cathode due to voltage surges. Note: Data contained herein are based on initial design and test criteria. Before using these data in final equipment designs, consult Machlett for possible revisions. ### GENERAL CHARACTERISTICS | Heater Voltage (AC or DC) | 6.3 | V | |--|------------|------------------------| | Heater Current at 6.3 Volts | 1.30 | Α | | Cathode Heating Time, minimum | 60 | sec | | Amplification Factor | 80 | | | Transconductance (Jk=200mA/cm²) | 38000 | μ mhos | | Interelectrode Capacitance, without Heater Voltage | | | | Grid-Plate | 2.25 | $\mathbf{p}\mathbf{f}$ | | Grid-Cathode | 9.5 | рf | | Plate-Cathode, maximum | .065 | pf | | Mechanical | | | | Mounting Position | Optional | | | Type of Cooling | | | | With radiator (ML-8535) | Forced-Air | | | Without radiator (ML-8534) Conduction & | Convection | | | Maximum Anode Temperature | 250 | °C | | Net Weight | | | | With radiator (ML-8535) | 45 | i g | | Without radiator (ML-8534) | 20 | - | | • • | | - 0 | # MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS ### CW RF Power Oscillator and Amplifier Class C | Maximum Ratings, Absolute Values | | | |---|------|--------------| | DC Plate Voltage | 2500 | V | | DC Grid Voltage | -150 | V | | Instantaneous Peak Grid-Cathode Voltage | | | | Grid negative to cathode | -400 | v | | Grid positive to cathode | 30 | \mathbf{v} | | DC Plate Current | 250 | mA | | DC Grid Current | 45 | mA | | Plate Dissipation | | | | Forced-air cooling (ML-8535) | 150 | W | | Conduction and convection (ML-8534) | 10 | W+ | | Grid Dissipation | 1.5 | W | | Frequency | 2.5 | GHz | | Typical Operation, Power Amplifier | | | | Frequency | 500 | MHz | | Filament Voltage | 6.0 | V | | DC Plate Voltage | 900 | V | | DC Grid Voltage | -30 | V | | DC Plate Current | 140 | mA | | DC Grid Current, approximate | 40 | mA | | Driving Power, approximate | 9 | W | | Useful Power Output | 65 | W | | Typical Operation, Power Amplifier | | | | Frequency | 2.3 | GHz | | Filament Voltage | 5.5 | V | | DC Plate Voltage | 1400 | V | | DC Plate Current | 250 | mA | | Useful Power Output | 100 | W | | Gain | 13 | db | | | | | ## Grid-Pulsed or Plate-Pulsed RF Oscillator or Amplifier — Class C | Maximum Ratings, Absolute Values | | | |---|-------|-----------------| | Plate Voltage | | | | Grid-pulsed, DC | 2500 | V | | Plate-pulsed, peak pulse supply | 3500 | v | | DC Grid Voltage | -150 | V | | Instantaneous Peak Grid-Cathode Voltage | | | | Grid negative to cathode | -750 | v | | Grid positive to cathode | 250 | v | | Average Plate Current | 16 | mΑ | | Average Grid Current | 6 | mA | | Pulse Plate Current | 5 | a | | Average Plate Dissipation | | | | Forced-air cooling (ML-8535) | 60 | W | | Conduction and convection (ML-8534) | 10 | W^{+} | | Average Grid Dissipation | 1.5 | W | | Pulse Duration | 6 | μ s $+$ $+$ | | Duty Factor | .0033 | ++ | | Frequency | 3 | GHz | | | | | | Typical Operation, Grid-Pulsed RF Amplifier | | | |---|----------------|-----| | Frequency | 1.1 | GHz | | Filament Voltage | 6.3 | V | | Pulse Duration | 3.5 | μS | | Duty Factor | .001 | | | DC Plate Voltage | 2000 | V | | DC Grid Voltage | 70 | V | | Peak Plate Current from DC Supply | 3.0 | a | | Peak Grid Current from Pulse Supply | 1.0 | a | | Driving Power During Pulse, approximate | 400 | W | | Useful Peak Power Output, approximate | 2.5 | kw | ### **Pulse Modulator or Pulse Amplifier** Maximum Ratings, Absolute Values | · Lantingo, I Loudingo | | | |---|-----------------|------| | DC Plate Voltage | 2500 | V | | Peak Plate Voltage | 3500 | v | | DC Grid Voltage | -150 | V | | Instantaneous Peak Grid-Cathode Voltage | | | | Grid negative to cathode | -750 | v | | Grid positive to cathode | 110 | v | | DC Plate Current | 150 | mΑ | | Pulse Cathode Current | 7.5 | a | | Average Plate Dissipation | | | | Forced-air cooling (ML-8535) | 150 | W | | Conduction and convection (ML-8534) | 10 | W† | | Average Grid Dissipation | 1.5 | W | | Pulse Duration | 6 | μs†† | | Duty Factor | .0033 | †† | | | | | †Greater plate dissipation will be possible with the ML-8534 when the tube is used with an appropriately designed heat sink. ††For applications requiring longer pulse duration or higher duty factors, consult the Machlett Engineering Department. # CHARACTERISTIC RANGE VALUES FOR EQUIPMENT DESIGN | | Min. | Max. | | |------------------------------------|------|-------|-----| | Filament Current at 6.3 V (Note 1) | 1.20 | 1.40 | Α | | Cut-Off Bias (Note 2) | _ | 30 | Vdc | | Grid-Plate Capacitance (Note 3) | 2.10 | 2.40 | pf | | Grid-Cathode Capacitance (Note 3) | 8.50 | 10.50 | pf | | Plate-Cathode Capacitance (Note 3) | | .065 | pf | - Note 1 For reduced filament voltage see "Heater Voltage" section in Application Notes. - Note 2 Measured with 1 mA plate current and a plate voltage of 1000 Vdc. - Note 3 Capacitance values are given for a cold tube. When the filament is heated to its proper temperature, the grid-cathode capacitance will increase by approximately 1 pf due to thermal expansion of the cathode. ### APPLICATION NOTES Before designing equipment for use with these tubes and before installing tubes in equipment, refer to the general information given in the Machlett publication entitled Application Notes, UHF Tubes—General. The millimeter dimensions are derived from the original inch dimensions. | A AB AC AD B C | Minimum
.714
.437
.662
.605 | .476
.682 | .780
.515 | Minimum
18.14 | Nominal | Maximum | Notes | |---------------------|---|--------------|--------------|------------------|---------|---------|-------| | AB
AC
AD
B | .437
.662
.605 | .682 | .515 | : t | | | | | AC
AD
B | .662
.605 | .682 | | 1 I | | 19.81 | | | AD
B | .605 | | | 11.10 | 12.09 | 13.08 | 1, 8 | | В | | 115 | .702 | 16.81 | 17.32 | 17.83 | 1, 10 | | I | (0) | .645 | .685 | 15.37 | 16.38 | 17.40 | 1, 9 | | c | .691 | | .740 | 17.55 | | 18.80 | | | | .570 | | .607 | 14.48 | | 15.42 | | | D | .520 | | .547 | 13.21 | | 13.89 | | | E | .650 | | .705 | 16.51 | | 17.91 | | | F | .400 | | .415 | 10.16 | | 10.54 | | | G | .022 | | .040 | .56 | | 1.02 | | | 1 | .192 | | .208 | 4.88 | | 5.28 | | | j | .240 | | .275 | 6.10 | | 6.98 | | | JA | .585 | | .635 | 14.86 | | 16.13 | | | K | .028 | | .045 | .71 | | 1.14 | ł | | L | 1.235 | | 1.265 | 31.37 | | 32.13 | | | м | .565 | | .580 | 14.35 | | 14.73 | | | Р | .775 | | .785 | 19.68 | | 19.94 | | | R | .935 | | .950 | 23.75 | | 24.13 | 1,8 | | T | .440 | | .460 | 11.18 | | 11.68 | 1, 10 | | ТВ | | | .250 | <u> </u> | | 6.35 | | | TC | .410 | | .425 | 10.41 | | 10.80 | | | U | .595 | | .607 | 15.11 | | 15.42 | 1, 9 | | w | | | .313 | | | 7.95 | | | z | | | .015 | | | .38 | ו | | ZA | .440 | | .460 | 11.18 | | 11.68 | | | | | | | | | | | #### **NOTES:** - The total indicated runout of the grid-contact surface (Note 8), the curhode-contact surface (Note 9) and the heater-contact surface (Note 10) will not exceed (Z). This measurement is made with the gage (Note 2) screwed on the anode thread (Note 3) so that the face of the gage makes full contact with the reference surface (Note 5). Runout is then measured with the gage chucked on the measurement reference axis. - See outline. Machlett gage No. S-L5. Details will be supplied upon request. - 3. See outline. Anode, $\frac{5}{16}$ 24 UNF-2A thread. - See outline. ¹/₆ − 24 UNF-2B thread. Use ¹/₆-24 bolt in this hole for tube extraction. - See outline. Reference surface. The tube shall be stopped only by this surface when screwed in the socket. - See outline. Insulating envelope. Do not clamp or locate on this surface. - 7. See outline. Measure anode temperature on this surface. - Grid-contact surface and reference dimension for eccentricity measurement, defined by dimensions (R) and (AB). - Cathode- or heater-contact surface and reference dimension for eccentricity measurement, defined by dimensions (U) and (AD). - Heater-contact surface and reference dimension for eccentricity measurement, defined by dimensions (T) and (AC). See also Note 11. - 11. See outline. Alternate heater-contact surface. Heater contact can be made to the bottom of the heater terminal-cup by means of a coil spring having a maximum coil OD of .390 inch and a minimum coil ID of .320 inch, or some similar device. THE MACHLETT LABORATORIES, INC. A SUBSIDIARY OF RAYTHEON COMPANY