TUNING INDICATOR

Subminiature tuning indicator.

HEATING: Direct by D.C. or A.C.; series or parallel supply

A. In battery receivers

Filament voltage

V_f 1.4 V

Filament current

I_f 25 mA

One of the pins 4 and 5 should be connected to the earthed point of the detector circuit.

B. In A.C. receivers

With 6.3 V transformer winding

With 6.3 V winding with mid tap

Pin 5 should be connected to the earthed point of the detector circuit.

C. In A.C./D.C. receivers

Filament voltage

 $V_{\mathbf{f}}$

1.3 V

The filament of the DM70 with a suitable shunt resistor can be connected in a normal heater chain, provided an N.T.C. resistor is present.

Pin 5 should be connected to the earthed point of the detector circuit.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Submin. 8 p

L = length of the light bar = max. 14 mm

OPERATING CHARACTERISTICS

Anode circuit in the case of A.C. filament supply

In order to avoid hum an anode resistor R_a is recommended according to the table below.

Supply voltage	v_b	250	V	^{R}a	1.8	МΩ
	$v_{\mathbf{b}}$	170	v	$R_{\mathbf{a}}$	1.0	МΩ
	V_{h}	110	v	R_a	0.47	$M\Omega$

Grid circuit in the case of A.C. filament supply

In order to avoid hum a filter is recommended in the grid circuit according to the above diagram.

 ${\bf R}_1$ is the detector resistor. In the case of non-delayed A.G.C. the resistor ${\bf R}_2$ and the capacitor ${\bf C}_1$ are already present.

¹⁾ This part of the leads should not be bent.

²⁾ This part of the leads should not be soldered.

OPERATING CHARACTERISTICS (continued)				
A. Battery supply					
Filament voltage	v_f	1.4 ¹)		1.4^{2})	v
Supply voltage	$V_{\mathbf{b}}$	67.5		90	V
Anode voltage	V_a^3)	60		85	v
Grid voltage	v_g	0		0	v
Anode current	Ia	105		170	μΑ
Length of light bar	L	10		11	mm
Grid voltage at L = 0	$V_{\alpha}(L = 0)$	- 7		-10	v
B. Mains supply	6				
Filament voltage	V_f^4)	1.4	1.4	1.4	v_{RMS}
Supply voltage	v_b	110	170	250	v
Anode resistor	R _a	0.47	1.0	1.8	$M\Omega$
Grid voltage	v_g	0	0	0	v
Anode current	I_a	105	110	105	μΑ
Length of light bar	L	10	10	10	mm
Grid voltage at L = 0	$V_g(L = 0)$	-15	-2 3	-34	v
LIMITING VALUES (Design centre rating system)					
Supply voltage in cold condition	v_{bo}	max. 4	150		v

Supply voltage in cold condition	${ m v_{b_o}}$	max. 450	V
Supply voltage	v_b	max. 300	V
Anode voltage in non-controlled			
condition	v_a	max. 150	V
Anode voltage	v_a	min. 45	v
Anode dissipation	w_a	max. 75	mW
Cathode current	I_k	max. 0.6	mA
Grid resistor	R_{α}	max. 10	$M\Omega$

January 1969

¹⁾ D.C.; pin 5 grounded
2) D.C.; pin 4 grounded
3) $V_a = V_b$ reduced by the bias for the output valve
4) A.C.; pin 5 connected to earth. When V_f is adjusted according to page 1, I_a will be 1-2 μ A lower. The other data remain unchanged.

DM70

page	sheet	date
1	1	1969.12
2	2	1969.12
3	3	1969.01
4	4	1969.12
5	FP	1999.08.11