S.Q. TUBE

Special quality decade counter tube.

QUICK I	REFERENCE DATA		
Life test	10 000 hours		
Base	Duodecal (12	pins)	
Heating	Indirect A.C. or D.C. Series or par	•	upply
Heater voltage	$v_{\mathbf{f}}$	6.3	v
Heater current	I _f	300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Duodecal

APPLICATION DIRECTIONS

Mounting

Any mounting position, except horizontal with screen down, is permitted.

Sensitivity to magnetic fields

To prevent interference by magnetic fields the flux density of these fields should not exceed $2x10^{-4}$ Wb/m² (= 2 Gauss) in any direction.

December 1968

APPLICATION DIRECTIONS

Ambient illumination

To obtain a clair reading the ambient illumination should range from $40-400\,\mathrm{lux}$ measured with an illumination-meter placed in vertical position. This illumination range incorporates the best compromise between the visibility of the figures of the mask and the luminescent picture.

CHARACTERISTICS

Heater voltage	v_{f}	6.3	V
Heater current	$\mathbf{I}_{\mathbf{f}}$	300	mA

CAPACITANCES

Anode No.2 to all other electrodes	C_{a_2}/R	10.5	pF
Deflection plate to all other electrodes	$C_{D/R}$	3.5	pF
Deflection plate to all other electrodes	C _{D'/R}	3.8	pF
Anode No.1 to all other electrodes	C_{a_1}/R	4.9	pF
Grid No.1 to all other electrodes	$C_{g_1/R}$	6.8	pF
Grid No.4 to all other electrodes	$C_{g_4/R}$	7.7	pF

OPERATING CHARACTERISTICS

Column I Nominal value

II Permitted values of spread and variation

	1	11	
v_b	300		V
v_{bg_1}	11.9	± 0.15	V
v_{bg_2}	300		V
v_D	156	<u>+</u> 1.5	V
v_{ℓ}	300		V
I_k	0.95		mA
I_{g_2}	0.1		mA
$R_{\mathbf{k}}$	15	± 1%	kΩ
R_{g_4}	47	± 5%	kΩ
Ra_1	39	±10%	kΩ
R_{a_2}	1	<u>+</u> 1%	МΩ
	$V_{\mathrm{bg}_{1}}$ $V_{\mathrm{bg}_{2}}$ V_{D} V_{ℓ} I_{k} $I_{\mathrm{g}_{2}}$ R_{k} $R_{\mathrm{g}_{4}}$ $R_{a_{1}}$	$\begin{array}{c cccc} V_{bg_1} & 11.9 \\ V_{bg_2} & 300 \\ V_D & 156 \\ V_{\ell} & 300 \\ I_k & 0.95 \\ I_{g_2} & 0.1 \\ R_k & 15 \\ R_{g_4} & 47 \\ R_{a_1} & 39 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

OPERATING CHARACTERISTICS (continued)

Note

The tube should be used in the circuit of fig.2.

Provided the ratio of the supply voltages V_{bg1} and V_D is strictly maintained the supply voltage V_b is allowed to vary within the range of V_b nom. $\pm 10\%$.

This condition can be realised by using a voltage divider R_1 , R_2 , R_3 with 1% precision resistors as indicated in the diagram fig.2.

A max. counting speed of 30000 count/s can be obtained with this circuit.

The input pulse at D should have a positive value of 13.6 V \pm 15%. The slope of the leading edge should be at least 20 x 10⁶ V/s. The slope of the trailing edge should not exceed 1.2 x 10⁶ V/s.

Fig.1

 $\tan \alpha > 20 \times 10^6 \text{ V/s}$ $\tan \beta < 1.2 \times 10.6 \text{ V/s}$

- 1. Connected to the preceeding E90CC pulse shaper (C1 = 6800 pF $\pm 10\%$) or the preceeding E90CC interstage pulse shaper (C1 = 680 pF $\pm 5\%$).
- 2. Connected to deflection plate D of next counter tube.
- 3. This parasitic capacitance should be reduced to the minimum by keeping the wiring as short as possible.

LIMITING VALUE of supply voltage V_b (See operating characteristics): V_b = max. 400 V

E1T

page	sheet	date
1	1	1968.12
2	2	1968.12
3	3	1968.12
4	4	1968.12
5	FP	2000.11.10