S.Q. TUBE

Special quality pentode designed for use as controlled R.F. or I.F. amplifier (max. freq. 400 MHz).

QUICK REFERENCE DATA			
Life test	1000 hours		
Mechanical quality	Shock and vibration resistant		
Base	Subminiature		
Heating	<pre>Indirect A.C. or D.C.; parallel supply</pre>		
Heater voltage	V _f 6.3 V		
Heater current	I _f 150 mA		
Anode current	I _a 7.2 mA		
Mutual conductance	S 4.5 mA/V		

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Subminiature

Leads should not be soldered nearer than 5 mm to the seal Leads should not be bent nearer than 2 mm to the seal

CHARACTERISTICS

Column I Nominal value or setting of the tube

II Range values for equipment design: Initial spread

III Range values for equipment design: End of life

		I	II	III	1
Heater voltage	$v_{\rm f}$	6.3			v
Heater current	$\mathbf{I_f}$	150	140-160		mA
Anode voltage	V _a	100			v
Grid No.2 voltage	v_{g_2}	100			V
Cathode resistor	$R_{\mathbf{k}}^{-}$	120			Ω
Anode current	I_a	7.2	5.2-9.2		mA
Grid No.2 current	I_{g_2}	2.0	1.0-3.0		mA
Mutual conductance	s	4.5	3.8-5.2	ΔS max. 25%	mA/V
Internal resistance	R_i	260	min.175	20,0	kΩ
Negative grid No.1 current	-Ig ₁		max.0.3	max.0.8	μΑ
Mutual conductance	S	25	1 - 75		μA/V
Grid No.1 voltage	$-v_{g_1}$	14			v
Leakage current between cathode and heater	I _{kf}		max. 5	max. 10	μΑ
Voltage between cathode and heater V _{kf} = 100 V					
Insulation resistance between electrodes	R _{ins}		min.100		МΩ

CHARACTERISTICS (continued)

		I	II	
Vibrational noise output	$\overline{v_o}$	-	max. 60	mV _{RMS}
Anode supply voltage V _{ba} = 100 V		:		
Grid No.2 supply voltage V _{bg2} = 100 V				
Cathode resistor R_k = 120 Ω				
Anode resistor $R_a = 10 \text{ k}\Omega$				
Grid No.1 resistor R _{g1} = 1 MΩ	·			
Cathode bypass capacitor $C_k = 1000 \ \mu F$				
Vibration frequency = 50 Hz				
Acceleration = 15 g				
CAPACITANCES With external sh	nield			
Anode to grid No.2, cathode heater and screen	Ca/g ₂ kfs	3.4	2.93.9	pF
Grid No.1 to grid No.2, cathode heater and screen	Cg ₁ /g ₂ kfs	4.2	3.8-4.8	pF
Anode to grid No.1	C_{ag_1}		max. 15	mpF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to assess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

Shock

The tube is subjected 5 times in each of 4 positions to an acceleration of $500~\rm g$ supplied by an NRL shock machine with the hammer lifted over an angle of $30^{\rm O}$.

Vibration

The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 50 Hz with an acceleration of 2.5 g.

December 1968

5899

LIFE

Production samples are tested to be within the end of life values (column III) under the following conditions during $1000\ \mathrm{hours}$.

Anode voltage	v_a	100	V
Grid No.2 voltage	v_{g_2}	100	v
Cathode resistor	$R_{\mathbf{k}}$	120	Ω

LIMITING VALUES (Absolute max. rating system)

Anode voltage	v_a	max.	165	V
Grid No.2 voltage	v_{g_2}	max.	155	v
Anode dissipation	w_a	max.	1.1	W
Grid No.2 dissipation	w_{g_2}	max.	0.55	W
Cathode current	I_k	max.	16.5	mA
Voltage between cathode and heater	$V_{\mathbf{k}\mathbf{f}}$	max.	200	V
Grid No.1 resistor	R_{g_1}	max.	1.2	$M\Omega$
Bulb temperature	t _{bulb}	max.	220	$^{\mathrm{o}}\mathrm{C}$

page	sheet	date
1	1	1968.12
2	2	1968.12
3	3	1968.12
4	4	1968.12
5	5	1968.12
6	6	1968.12
7	FP	2001 05 12