S.Q. TUBE

Special quality pentode designed for use as wide-band amplifier.

QUICK REFERENCE DATA			
Life test	1000 hours		
Mechanical quality	Shock and vib	ration res	istant
Base	Miniature 7 p	oin	
Heating	Indirect A.C. or D.C	.; parallel	supply
Heater voltage	$ m v_{f}$	6.3	v
Heater current	$\mathtt{I}_{\mathbf{f}}$	175	mA
Mutual conductance	S	5	mA/V
Sharp cut off			

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Miniature 7 pin

CHARACTERISTICS

Column I Nominal value or setting of the tube

II Range values for equipment design: Initial spread

		I	II	}
Heater voltage	$V_{\mathbf{f}}$	6.3		V
Heater current	$\mathbf{I_f}$	175	160 - 190	mA
Anode voltage	V_a	120		V
Grid No.2 voltage	v_{g_2}	120		v
Grid No.1 voltage	$-v_{g_{\mathrm{I}}}$	2		V
Anode current	Ia	7.5	5 - 11	mA
Grid No.2 current	I_{g_2}	2.5	0.8 - 4.0	mA
Mutual conductance	S	5	3.8 - 6.2	mA/V
Internal resistance	R_i	0.34		МΩ
Negative grid current	-Ig ₁		max. 0.1	μ A
Anode supply voltage	V _{ba}	120		V
Grid No.2 voltage	v_{g_2}	120		v
Anode resistor	R_a	0.1		МΩ
Grid No.1 voltage	$-v_{g_1}$	10		V
Anode current	Ia		max. 200	μΑ
Grid No.1 cut off voltage	-v _{g1}	8.5		V
Anode voltage	v_a	120		V
Grid No.2 voltage	v_{g_2}	120		v
Anode current	Ia	10		μA
Leakage current between cathode and heater Voltage between cathode and heater V _{kf} = 100 V	I _{kf}		max. 10	μΑ
Insulation resistance between two electrodes	R		min. 100	MΩ

Grid No.1 to grid No.2, grid No.3 cathode and heater

Anode to grid No.2, grid No.3 cathode and heater

Anode to grid No.1

Grid No.1 to grid No.2

	I	II	L
C_{g_1/g_2g_3kf}	4.0	3.4 - 4.6	pF
C _{a/g2g3kf}	2.85	2.45 - 3.25	рF
C_{ag_1}		max. 0.02	рF
$c_{g_1g_2}$	1.4	j	pF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to assess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

Shock

The tube is subjected 5 times in each of 4 positions to an acceleration of $500~\rm g$ supplied by an NRL shock machine with the hammer lifted over an angle of $30^{\rm o}$.

Vibration

The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 50 Hz with an acceleration of 2.5 g.

LIFE

Production samples are tested to be within the end of life values (column III) during 1000 hours.

5654

LIMITING VALUES (Absolute max. rating system)

Anode voltage	v_{a_0}	max.	600	V
	V_a	max.	200	V
Grid No.2 voltage	$v_{g_{2o}}$	max.	600	v
	v_{g_2}	max.	155	V
Grid No.1 voltage	$-v_{g_1}$	max.	50	V
	$+ v_{g_1}$	max.	0	V
Anode dissipation	w_a	max.	1.65	W
Grid No.2 dissipation	w_{g_2}	max.	0.55	W
Cathode current	I _k	max.	20	mA
Grid No.1 current	I_{g_1}	max.	1	mA
Grid No.1 resistor	R_{g_1}	max.	0.1	$\mathbf{M}\Omega$
Voltage between cathode and heater	$v_{\mathbf{kf}}$	max.	135	V
Bulb temperature	^t bulb	max.	165	$^{\mathrm{o}}\mathrm{C}^{1})$

Heater voltage: The average heater voltage should be 6.3 V.

Variations of the heater voltage exceeding the range of 5.7 V to 7.0 V will shorten the tube life.

The tolerance of heater current (column II) should be taken into account.

¹⁾ Tube life and reliability of performance will be enhanced by operation at lower temperatures.

page	sheet	date
1	1	1968.12
2	2	1968.12
3	3	1968.12
4	4	1968.12
5	5	1968.12
6	FP	2001.04.21