
S.Q. OUTPUT PENTODE

Special quality pentode designed for use as output tube and video amplifier.

QUICK REFERENCE DATA			
Life test	1000 hours		
Mechanical quality	Shock and vibration resistant		
Base	Subminiature		
Heating	Indirect A.C. or D.C., parallel supply		
Heater voltage	$v_{\rm f}$ 6.3 V		
Heater current	I _f 450 mA		
Mutual conductance	S 9 mA/V		
Anode current	I _a 21 mA		

DIMENSIONS AND CONNECTIONS

Base: Subminiature Dimensions in mm

Connections should not be soldered nearer than 5 mm to the seal. Leads should not be bent nearer than 1.5 mm to the seal.

5639

CHARACTERISTICS

Column I Nominal value or setting of the tube

II Range values for equipment design: Initial spread

III Range values for equipment design: End of life value

		I	l II	III	1
Heater voltage	$\overline{\mathrm{v_f}}$	6.3			v
Heater current	If	450	420-480		mA
Anode voltage	v _a	150			v
Grid No.2 voltage	v_{g_2}	100			v
Cathode resistor	R_k	100			Ω
Anode current	I_a	21	14-28	1	mA
Grid No.2 current	I_{g_2}	4.0	2-6		mA
Mutual conductance	s	9.0	7.5-10.5	ΔS: max.	mA/V
Internal resistance	R_i	50		20 %	kΩ
Negative grid No.1 current	$-I_{g_1}$		max.1.0	max. 2.0	μΑ
Grid No.1 resistor $R_{g_1} = 1 M\Omega$	-				
Grid No.1 cut-off voltage	-v _{g1}	14			
Anode voltage	v_a	150			v
Grid No.2 voltage	v_{g_2}	100			v
Anode current	I _a		max. 75		μΑ
Leakage current between cathode and heater	I _{kf}		max. 15	max. 60	μΑ
Voltage between cathode and heater V _{kf} = 100 V	i				
Insulation resistance between two electrodes	R _{ins}		min. 100	min. 50	МΩ
Voltage between electrodes V = 100 V					

CHARACTERISTICS (continued)

		I	II	III	
Vibrational noise output	$\overline{v_o}$		max. 100		mV _{eff}
Anode supply voltage	v_{ba}	150			v
Anode resistor	R_a	2			kΩ
Grid No.2 voltage	v_{g_2}	100			v
Cathode resistor	R_k	100			Ω
Cathode by pass capacitor C_k = 1000 μF					
Grid No.1 resistor R_{g_1} = 0.1 $M\Omega$:	
Vibration frequency = 40 Hz					
Acceleration = 15 g					

CAPACITANCES With external shield, inside diameter 10.3 mm

Grid No.1 to grid No.2, grid No.3, cathode and heater

Anode to grid No.2, grid No.3, cathode and heater

Anode to grid No.1

	I	II	
$C_{g_1/g_2} k_{g_{3f}}$	9	8-10	pF
Ca/g2 kg3f	8	7-9	pF
C_{ag_1}		max.0.13	pF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to assess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

Shock

The tube is subjected 5 times in each of 4 positions to an acceleration of $500~\rm g$ supplied by an NRL shock machine with the hammer lifted over an angle of $30^{\rm o}$.

Vibration

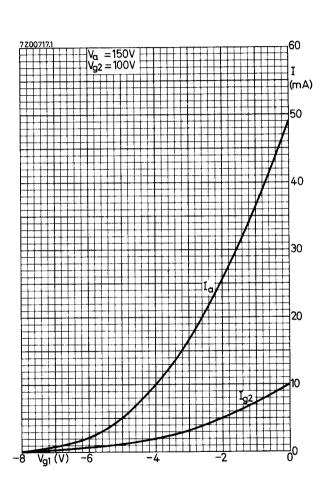
The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 50 Hz with an acceleration of 2.5 g.

LIFE

Production samples are tested to be within the end of life values (column III) during 1.000 hours.

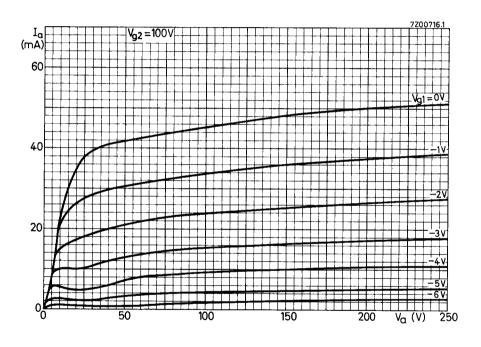
LIMITING VALUES (Absolute max. rating system)

Anode voltage	v_{a_o}	max.	330	V
Anode voltage	v_a	max.	165	V
Anode dissipation	w_a	max.	4	W
Grid No.2 voltage	v_{g_2}	max.	155	V
Grid No.2 dissipation	w_{g_2}	max.	1	W
Grid No.1 voltage	v_{g_1}	max.	0	V
Grid No.1 negative voltage	$-v_{g_1}$	max.	55	V
Grid No.1 resistor	_			
with fixed bias	$^{\mathrm{R}}$ g1	max.	100	$k\Omega$
with automatic bias	R_{g_1}	max.	500	$k\Omega$
Cathode current	I_k	max.	40	mA
Voltage between cathode and heater,				
d.c. component	v_{kf}	max.	200	V
peak value	v_{kf_p}	max.	200	v
Bulb temperature	t _{bulb}	max.	220	oC


Heater voltage: The average heater voltage should be 6.3 V

Variations of the heater voltage exceeding the range of 6.0 to
6.6 V will shorten the tube life.

OPERATING CHARACTERISTICS


Output tube class A

Anode voltage	v_a	150	V
Grid No.2 voltage	v_{g_2}	100	v
Cathode resistor	$R_{\mathbf{k}}$	100	Ω
Load resistance	$R_{a_{\infty}}$	9	$k\Omega$
Input voltage	V_{i}	2	v_{RMS}
Output power	$\mathbf{w}_{\mathbf{o}}$	1	W

page	sheet	date
1	1	1968.12
2	2	1968.12
3	3	1968.12
4	4	1968.12
5	5	1968.12
6	6	1968.12
7	FP	2001.04.21