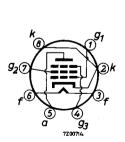
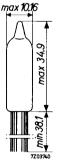
S.Q. DUAL CONTROL PENTODE


Special quality dual control pentode designed for use as amplifier and mixer.


QUICK REFERENCE DATA			
Life test	1000 hours		
Mechanical quality	Shock and vib	ration resistant	
Base	Subminiature		
Heating	Indirect		
	A.C. or D.C	.; Parallel supply	
Heater voltage	$ m V_{f}$	6.3 V	
Heater current	${ m I_f}$	150 mA	
Mutual conductance anode to grid No.1	${f s_{ag}}_1$	3.2 mA/V	
Mutual conductance anode to grid No.3	S _{ag3}	0.5 mA/V	

DIMENSIONS AND CONNECTIONS

Base: Subminiature

Dimensions in mm

Connections should not be soldered nearer than $5\ \mathrm{mm}$ to the seal.

Leads should not be bent nearer than 1.5 mm to the seal.

CHARACTERISTICS

Column I Nominal value or setting of the tube

II Range values for equipment design: Initial spread

III Range values for equipment design: End of life

	_	I	l II	III	
Heater voltage	$V_{\mathbf{f}}$	6.3			V
Heater current	$I_{\mathbf{f}}$	150	140 - 160		mA
Anode voltage	v _a	100			v
Grid No.2 voltage	v_{g_2}	100			V
Grid No.3 voltage	v_{g_3}	0			v
Cathode resistor	R_k	150			Ω
Anode current	I_a	5.3	3.7 - 6.9		mA
Grid No.2 current	I_{g_2}	4.0	2.8 - 5.4		mA
Mutual conductance;			!		
anode to grid No.1	s_{ag_1}	3.2	2.7 - 4.0	ΔS:max. 20 %	mA/V
anode to grid No.3	S_{ag_3}	0.5		== 70	mA/V
Internal resistance	R_i	110			kΩ
Negative grid No.1 current	-Ig ₁		max. 0.3	max. 1.0	μΑ
Grid No.1 resistor Rg ₁ = 1 MS	-				
Anode voltage	Va	100			v
Grid No.2 voltage	v_{g_2}	100			v
Grid No.3 voltage	v_{g_3}	-1			V
Cathode resistor	$R_{\mathbf{k}}$	150			Ω
Anode current	I_a	4.0			mA
Grid No.2 current	I_{g_2}	5.8			mA
Mutual conductance;	_				
anode to grid No.1	s_{ag_1}	1.95			mA/V
anode to grid No.3	S_{ag_3}		0.5 - 1,8		mA/V
Internal resistance	R _i	50			kΩ

CHARACTERISTICS (continued)

		I	II	III	L
Grid No.1 cut-off voltage	-v _{g1}		max. 7.5		V
Anode voltage	v_a	100			V
Grid No. 2 voltage	v_{g_2}	100			V
Anode current	Ia	100			μΑ
Grid No.3 cut-off voltage	-v _{g3}		max. 8.0		ν
Anode voltage	v_a	100		į	V
Grid No.2 voltage	v_{g_2}	100			v
Anode current	$I_{\mathbf{a}}$	100			μΑ
Leakage current between cathode and heater	I _{kf}		max. 5	max. 10	μΑ
Voltage between cathode and heater V_{kf} = 100 V					
Insulation resistance between two electrodes	$R_{ ext{ins}}$		min. 100	min. 50	МΩ
Voltage between electrodes = 10	V 00				
Vibrational noise output	v _o		max. 40		mV
Anode supply voltage	v_{ba}	100			v
Anode resistor	R_a	10			kΩ
Grid No. 2 voltage	v_{g_2}	100			v
Grid No.3 voltage	v_{g_3}	0			v
Cathode by pass capacitor C = :	1000 μF				
Cathode resistor R_k = 150 Ω					!
Vibration frequency 40 Hz					
Acceleration 15 g					

CAPACITANCES; With external shield

		I	II	
Grid No.1 to grid No.2, grid No.3, cathode and heater	C _{g1/g2g3} kf	4.0	3.5 - 4.5	рF
Grid No.3 to grid No.1, grid No.2, cathode and heater	$^{\mathrm{C}}\mathrm{g_{3}/g_{2}g_{1}}$ kf	4.0	3.5 - 4.5	рF
Anode to grid No.2, grid No.3, cathode and heater	^C a/g ₂ g ₃ kf	3.4	2.9 - 3.9 max.0.02	pF
Anode to grid No.1	c_{ag_1}		max.0.02	pF
Anode to grid No.3	$^{ m C}_{ m ag_3}$		max. 1.1	pF
Grid No.1 to grid No.3	$c_{g_1g_3}$		max.0.15	pF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to ascess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

Shock

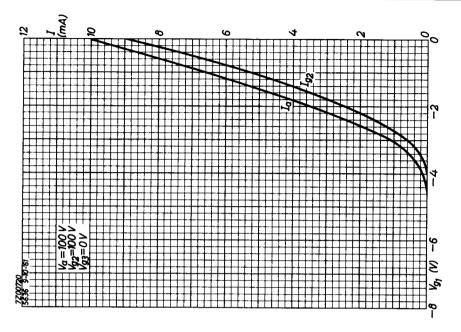
The tube is subjected 5 times in each of 4 positions to an acceleration of $500~\mathrm{g}$ supplied by an NRL shock machine with the hammer lifted over an angle of 30° .

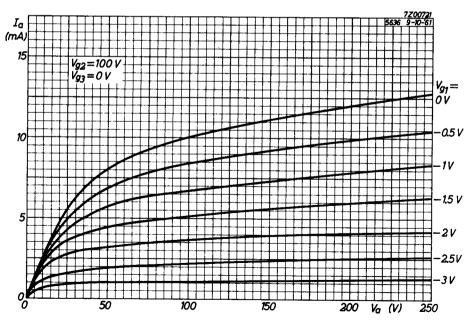
Vibration

The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 25 Hz with an acceleration of 2.5 g.

LIFE

Production samples are tested to be within the end of life values (column III) during 1000 hours.


LIMITING	VALUES	(Absolute max.	rating system)
THIM I THAT	AVECTS	umbolute man.	Tading System;


Anode voltage	$v_{\mathbf{a_o}}$	max.	3 30	V
Anode voltage	$V_{\mathbf{a}}$	max.	165	V
Anode dissipation	$W_{\mathbf{a}}$	max.	1.1	W
Grid No.3 voltage	${ m v_{g_3}}$	max.	3 0	V
Grid No.3 negative voltage	$-v_{g_3}$	max.	55	V
Grid No.2 voltage	${ m v_{g}}_{2}$	max.	155	V
Grid No.2 dissipation	w_{g_2}	max.	0.7	W
Grid No.1 voltage	v_{g_1}	max.	0	V
Grid No.1 negative voltage	$-v_{g_1}$	max.	55	V
Grid No.1 resistor	$^{\mathrm{R}}\mathrm{g}_{1}$	max.	1.2	$\mathbf{M}\Omega$
Cathode current	$I_{\mathbf{k}}$	max.	16	mA
Voltage between cathode and heater;				
D.C. component	$v_{\mathbf{kf}}$	max.	200	V
peak value	v_{kf_p}	max.	200	V
Bulb temperature	t _{bulb}	max.	220	$^{\mathrm{o}}\mathrm{C}$

Heater voltage: The average heater voltage should be 6.3 V.

Variations of the heater voltage exceeding the range of $6.0\,\mathrm{V}$ to 6.6. V will shorten the tube life.

The tolerance of heater current (column II) should be taken into account.

page	sheet	date
1	1	1968.12
2	2	1968.12
3	3	1968.12
4	4	1968.12
5	5	1968.12
6	6	1968.12
7	FP	2001.04.21