

Intelligent Infrared CO₂ Gas Sensor

(Model: MH-711A)

Manual

Version: 3.3

Valid from: May 1st, 2014

Zhengzhou Winsen Electronics Technology Co., Ltd.

Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to keep customers using it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD.

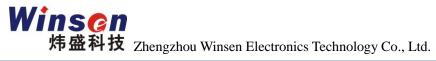
MH-711A Infrared CO2 Gas Sensor

1. Product Description

MH-711A is a universal type intelligent sensor to detect CO2 in air taking advantages of non-dispersive infrared (NDIR) principle. With high selectivity, no oxygen dependence, high performance and long lifespan features, MH-711A also has built-in temperature compensation feature. MH-711A is a compact and high-performance sensor based on infrared absorption of gas detection technology, micro-machining and sophisticated circuit design.

2. Characteristics

- Long lifespan
- \triangleright High Sensitivity and resolution
- 5V constant power supply, low power consumption
- Output method: UART, analog voltage signal, etc.
- Quick response & Resume
- Temperature compensation, excellent linear output
- \triangleright Anti-poisons, anti-vapor interference
- Detect combustible gas concentration matching with flame-proof marked detector in area 1&2 explosive environments which mix of II A, II B, II C and T1-T6 flammable gases, vapors and air


3. Application

Widely used for industrial field instrumentation, industrial-process control and safety protection

4. Technical Parameters

D 1 1 1 1 1 1 1 1 1	NAU 744 A				
Product Model	MH-711A				
Target Gas	CO2				
Working Voltage	4.5 V ~ 5.5V DC				
Average Current	< 100mA				
Interface Level	3.3V				
Measurement Range	0~30%VOL optional (view table 2)				
Output Signal	IIC				
Output Signal	0.4-2V DC				
Warm-up Time	3min				
Response Time	T ₉₀ < 30s				
Working Temp.	-40℃ ~70℃				
Working Humidity	0 to 95%RH, Non-condensing				
Dimension	Ф44×61mm				
Weight	350g				
Lifespan	>5 years				
Ex-marking	Ex d ∐ C T6 Gb				
Protected Class	IP65				

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: sales@winsensor.com

Tahl	1 ما	Technical	Inday
iao	е .	тесинисан	HILLICHEX

Detected Gas	Measurement Range	Accuracy	Remarks	
	0~2000ppm		Temperature compensation	
	0~6000ppm	0~6000ppm	Temperature compensation	
Carbon	0~1%VOL	±50ppm +/-5% reading	Temperature compensation	
Dioxide	0~3%VOL	±30ppiii +/-3/0 reading	Temperature compensation	
(CO2 gas)	0~5%VOL		Temperature compensation	
	0~10%VOL		Temperature compensation	
	0-30%VOL	±15% reading	Temperature compensation	

Table 2: Measurement Range and Accuracy

5. Structural Drawing

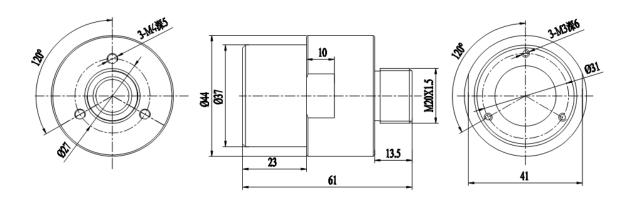


Figure 1 Structural Drawing of Sensor

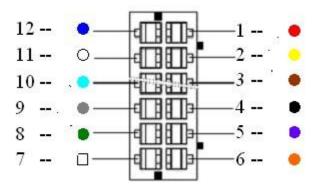


Figure 2: Pin Definition

Pin	Description
Pad1	Vin (input voltage 4.5V∼5.5V)
Pad4	GND
Pad5	Vout (0.4~2V)
Pad2	IIC(SCL) clock
Pad3	IIC(SDA) data

Pad6, Pad7, Pad8	Reserved, do not connect
Pad10, Pad11, Pad12	

Table 3: Definition of Pin

6. Application Circuit

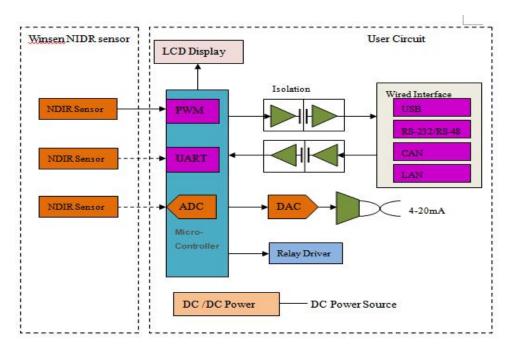


Figure 3 Application Circuit

Explanations:

6.1: Analogue Voltage Output

Voltage output range 0.4 to 2V, relatively stands for 0 to F.S.

Pad1 connect with 5V supply, Pad4 connect with VSS and Pad5 connect with input side of ADC. Then warm-up the sensor, the Vout will show a voltage value which stands for the gas concentration. If the sensor malfunctions, the output voltage is 0V.

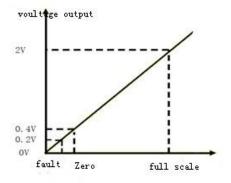


Figure 4 Analogue Voltage Output

6.2 Digital Output

Pad1 connect with 5V supply, Pad4 connect with VSS.

Customer's CLK connects with sensor CLK; SDA connect sensor SDA.

The detector can read the value of gas concentration directly through the IIC of the sensor (The pull-up resistor of user's SCL and SDA signal lines must be less than 10k to ensure the normal work of the communication interface), no need to calculate the gas concentration.

6.2.1 Communication Protocol

MH-711A is communicated through IIC bus. The module works basing IIC slave mode and can connects to external MCU,module address: 0x55, write operation address: 0xAA, read operation address: 0xAB. Every frame number data contains 10 bytes. Different host orders lead to different data and the last byte of data is the proof test value. The SCL clock frequency is recommend less than 10K.

1) Device Address

Address format: Highest seven digits are the module add of the sensor(0x55), the least significant digit is SDIR, 0 stand for Reading, 1 stand for Writing.

Α7	A6	A5	A4	А3	A2	A1	W/R
1	0	1	0	1	0	1	0/1

Table 4: Address Format

IIC communication

Write address: 0xAA, Read address: 0xAB

2) Bus Description

IIC interface protocol is a special bus signal protocol, is composed of 3 parts - Start(S), Stop(P) and binary data, as shown below.At start,SCL is high,SDA is at falling edge.After that,send the slave add.After the seven add digits is the control read&write digits,choose the read&write operation as above picWhen the slave device recognizes the corresponding add information,it sends a responsive signal to main device and SDA is pulled down at the ninth clock cycle.At stop,SCL keeps high level,SDA is at rising edge.

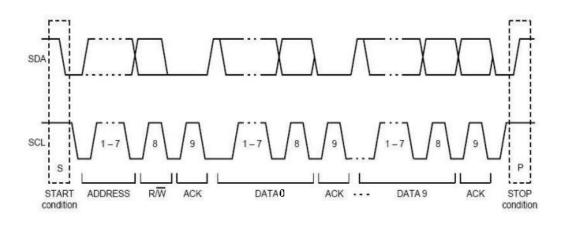
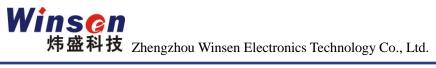


Figure 5 IIC Sequence Chart


3) Command

Every frame number data of IIC communication command contains 10 bytes. Different host orders lead to different data and the last byte of data is the proof test value.

Table 5 Command List

0x96	Gas Concentration
0xA0	Calibrate zero point(ZERO)
0xAA	Calibrate span point (SPAN)

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: sales@winsensor.com

Gas Concentration Reading

1	0x96	Gas Con	Gas Concentration Reading								
	0	1	2	3	4	5	6	7	8	9	
	Command									Check	
Send	Command									Code	
	0x96	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x6A	
EXP.	96 00 00 00 0	00 00 00 0	0 00 6A								
	0	1	2	3	4	5	6	7	8	9	
Return	Module					High	Low	High	Low	Check	
	Status					Density	Density	Range	Range	Code	
EXP.	Return										

Gas concentration= high density *256 + low density

Calibrate Zero

1	0xA0	Gas Concentration Reading								
	0	1	2	3	4	5	6	7	8	9
	Comma									Check
Send	nd				-					Code
	0xa0	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x60
EXP.	A0 00 00	00 00 00 00	0 00 00 60							
	0	1	2	3	4	5	6	7	8	9
Return	1	1		1	-	1		1		
EXP.	No value r	No value return								

Calibrate Span

1	0xAA	Gas Concentration Reading									
	0	1	2	3	4	5	6	7	8	9	
	Comma	CDAN	Value							Check	
Send	nd	SPAIN	SPAN Value							Code	
	Охаа	High	Low	0x00	0x00	0x00	0x00	0x00	0x00	0xbb	
		Byte	Byte	0,000						OXDD	
EXP.	AA 13 88	00 00 00 00	00 00 BB	(Eg. calibra	ate 5000ppr	n, HEX: Ox	1388)				
	0	1	2	3	4	5	6	7	8	9	
Return						1		1			
EXP.	No value r	No value return									

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: sales@winsensor.com

6.2.2 Calibrate and Calculate

The checksum = (invert (byte0 +... + 8)) + 1 For example, Gas Concentration Reading

	Command Sent									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	
Command	-	-	-	-	-	-	-	-	Check	
									Value	
0x96	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x6A	

A. Add all the bytes together except byte 0

$$0x96 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0x96$$

B. Get the value from step A, then invert it.

$$0xff - 0x96 = 0x69$$

C. Plus one based on the value of step B

0x69 + 0x01 = 0x6A

6.2.3 Example Program

C Language Calibrate & Calculate and Routine

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 9; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

7. Notes For Maintenance

- 7.1 The sensor should be calibrated regularly. Recommended cycle time is once per 6 months.
- 7.2 Do not use the sensor in the high dusty environment for long time.
- 7.3 Please use the sensor with correct power supply.

Zhengzhou Winsen Electronics Technology Co., Ltd

Add.: NO.299 Jinsuo Road, National Hi-Tech Zone,

Zhengzhou, 450001 China Tel.: 0086-371-67169097 Fax: 0086-371-60932988 E-mail:sales@winsensor.com

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email