

Modular Potentiometers with Cermet (P11) or **Conductive Plastic Elements (PA11)**

FEATURES

- CECC 41300
- GAM T1

- PA11 version for professional audio applications
- Trimmer version T11/TA11 (see document No. 51021)
- Miniature module size: 12.5 mm square low current compatibility
- Five shaft diameters and 12 terminal styles
- Multiple assemblies up to seven modules
- · Shaft and panel sealed version
- Up to twenty-one indent positions
- Switch modules
- · Concentric shafts
- Motorized version
- · Custom designs

	VERSATILE	MODULAR	COMPACT	ROBUST
--	-----------	---------	---------	--------

		PA11	P11
Resistive Element		Conductive plastic	Cermet
Electrical Travel		270° ± 10°	270° ± 10°
Resistance Range*	Linear Law	1 kΩ to 1 MΩ	10 Ω to 10 MΩ
<u> </u>	Non Linear Law	470 Ω to 500 kΩ	100 Ω to 2.2 MΩ
Tolerance	Standard	± 20 %	± 20 %
	On request	-	± 5 % or ± 10 %
Power Rating	Linear Law	0.5 W at + 70 °C	1 W at + 70 °C
	Non linear Laws	0.25 W at + 70 °C	0.5 W at + 70 °C
	Multiple Assemblies	0.25 W at + 70 °C per module	0.5 W at + 70 °C per module
Temperature Coefficient (Typ	pical)	± 500 ppm/°C	± 100 ppm/°C (R ≥ 100 Ω)
Limiting Element Voltage		350 V	350 V
Contact Resistance Variation	n Linear Law	1 %	2 % or 3 Ω
End Resistance (Typical)		2 Ω	2 Ω
Independent Linearity (Typic	al) Linear Law	± 5 %	± 5 %
Insulation Resistance		$10^6\mathrm{M}\Omega$ min.	$10^6\mathrm{M}\Omega$ min.
Dielectric Strength		1500 V _{RMS} min.	1500 V _{RMS} min.
Attenuation		90 dB max. and 0.05 dB min.	-
Mechanical Rotational Life		50 000 cycles	50 000 cycles

^{*} Consult Vishay Sfernice for other ohmic values

MECHANICAL SPECIFICATIONS PA11 AND P11

Mechanical Travel:

 $300^{\circ} \pm 5^{\circ}$

3 mm, 4 mm (1/8") dia. Shafts

Operating Torque, Single and Dual Assemblies:

6 mm (1/4") dia. Shafts

0.5 to 1.3 Ncm max. (0.7 to 1.8 oz-inch max.) 0.7 to 1.5 Ncm max. (1 to 2.1 oz-inch max.)

Three to Seven Modules (per module): 0.2 to 0.3 Ncm max. (0.3 to 0.45 oz-inch max.)

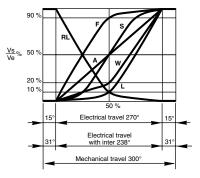
End Stop Torque:

3 mm, 4 mm (1/8") dia. Shafts

25 Ncm max. (2.1 lb-inch max.)

6 mm (1/4") dia. Shafts **Tightening Torque:**

80 Ncm max. (6.8 lb-inch max.)

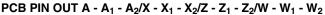

6 mm, 7 mm (1/4") dia. bushings 10 mm (3/8") dia. bushings

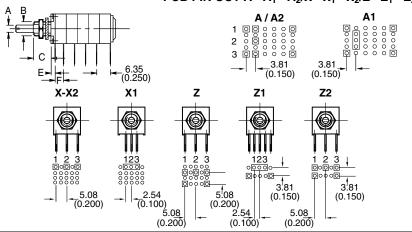
150 Ncm max. (13 lb-inch max.)

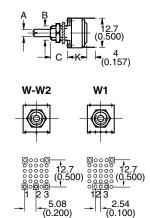
Weight

250 Ncm max. (21 lb-inch max.) 7 g to 9 g per module (0.25 to 0.32 oz)

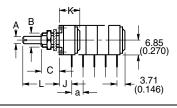
VARIATION LAWS

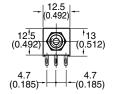


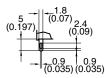


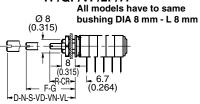

Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

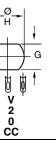
Vishay Sfernice

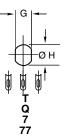

DIMENSIONS in millimeters [inches]

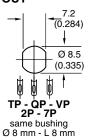




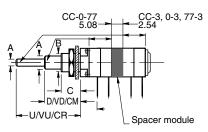


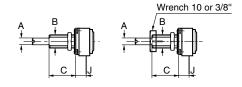




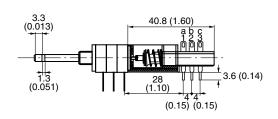

PANEL AND SHAFT SEALED TP/QP/VP/2P/7P

PANEL CUT OUT





CIRCUIT DIAGRAM


CONCENTRIC SHAFT

P11/PA11 71 P11/PA11 71H
P11/PA11 72 P11/PA11 72H with spindle baking nut

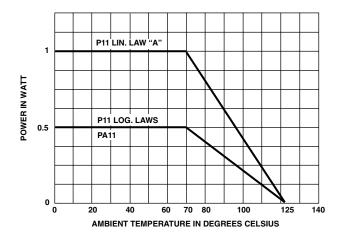
SWITCH: MOMENTARY PUSH OR PUSH-PUSH

The position of each module is free

	Shafts	Т	Q	٧	CC	7	71	72	2		0	7	7
	Silaits	ns mm	± 0.5	5 dimensions inches ± (0.01)									
Α	Shafts Ø	3	4	6	3/6	1/8"	1/8"	1/8"	1/4"	1/8"	1/4"	0.07	1/8"
В	Bushing Ø	6	7	10	10	1/4"	1/4"	1/4"	3/8"	3/8"		1/4"	
С	L	8	8	9.5	9.5	1/4"	3/8"	1/2"	3/8"	3/8"		1/4"	
J	version Y, X, X ₁ , X ₂	5	5	7	7	0.200	0.200	0.200	0.278	0.278		0.200	
	K	9.1	9.1	11.1	-	0.357	0.357	0.357	0.436	-		-	
Ε	version Z	1.8	1.8	3.8	3.8	0.071	0.071	0.071	0.150	0.150		0.0	71
Ε	version	1.6	1.6	3.6	3.6	0.063	0.063	0.063	0.14	0	.14	0.0	63
	F	versi	on Z :	5.08 (0	0.200)	versions A- A ₁ -A ₂ -Z ₁ -Z ₂ : 3.81 (0.150)							
G	Panel	5.2	6.2	8.2	8.2	0.197	0.197	0.197	0.323	.3	323	0.1	97
Н	Cutout Ø	6.5	7.5	10.5	10.5	0.268	0.268	0.268	0.394	0.	394	0.2	68
а		varia	able	5.08 (0	0.200)	7.62 (0.300) 10.16 (0.400)							
	Thread		М	0.75		32 threads/inch							
	Nut	8	10	12	12	0.313	0.313	0.313	0.500	0.	500	0.3	13
Shaft lengths L Measurement from the mounting face, see ordering procedures													

Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

ENVIRONMENTAL SPECIFICATIONS


PA11 P11

Operating Temperature Range- 55 °C + 125 °C- 55 °C + 125 °CClimatic Category55/125/2155/125/56SealingIP64IP64

Storage Temperature $-55 \,^{\circ}\text{C} + 125 \,^{\circ}\text{C}$ $-55 \,^{\circ}\text{C} + 150 \,^{\circ}\text{C}$

	STANDARD RESISTANCE ELEMENT DATA									
P11 CERMET						PA11			СТ	
	LINEAR LA	w	NO	ON LINEAR	LAW	CONDUCTIVE PLASTIC LINEAR LAW			- 55 °C	+ 125 °C
MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. MAX. MAX. CUR. POWER WORKING THROUGH AT 70 °C VOLTAGE WIPER		P11	PA11	
W	٧	mA	W	V	mA	W	V	mA	ppm/°C	
1	4.69 6.85	213.2 145.8							± 200	
1 0.56 0.26 0.12	10 14.8 21.6 31.6 46.9 63.5 100 148.3 216.7 316.2 350 350	100 67.4 46.1 31.6 21.3 14.5 10 6.7 4.6 3.16 1.59 0.75 0.35	0.5 0.5 0.26 0.12	15.3 22.4 33.2 48.5 79.7 105 153 224 332 350 350	32.7 22.4 15.1 10.3 7.07 4.77 3.26 2.24 1.51 0.74 0.35	0.5 0.5 0.5 0.5 0.26	22.4 33.2 48.5 79.7 105 153 224 332 350	22.4 15.1 10.3 7.07 4.77 3.26 2.24 1.51 0.74	± 100	± 1000
•	POWER LT 70 °C W 1 1 0.56 0.26	MAX. POWER WORKING VOLTAGE W V 1 4.69 6.85 10 14.8 21.6 31.6 46.9 63.5 100 148.3 216.7 1 316.2 0.56 0.26 350 0.12 350 0.05 350	POWER TO °C VOLTAGE WIPER W V mA 1 4.69 213.2 6.85 145.8 10 100 14.8 67.4 21.6 46.1 31.6 31.6 46.9 21.3 63.5 14.5 100 10 148.3 6.7 216.7 4.6 1 316.2 3.16 0.56 350 0.75 0.12 350 0.35 0.05 350 0.16	MAX. POWER VORKING VOLTAGE WIPER AT 70 °C W V mA 1 4.69 213.2 6.85 145.8 10 100 100 14.8 67.4 21.6 46.1 31.6 31.6 46.9 21.3 63.5 14.5 100 10 10 10 10 10 10 10 10 10 10 10 10	MAX. POWER IT 70 °C MAX. WORKING VOLTAGE MAX. POWER VOLTAGE MAX. POWER WORKING WIPER MAX. WORKING VOLTAGE W V mA W V 1 4.69 213.2 0.5	MAX. POWER IT 70 °C MAX. WORKING VOLTAGE MAX. POWER WIPER MAX. POWER AT 70 °C WORKING VOLTAGE MAX. THROUGH WIPER MAX. POWER AT 70 °C WORKING VOLTAGE MAX. THROUGH WIPER W V mA W V mA 1 4.69 213.2 0.5	MAX. MAX. MAX. CUR. MAX. POWER WORKING THROUGH WIPER AT 70 °C W W W W W W W W W	MAX. MAX. MAX. CUR. MAX. POWER WORKING THROUGH WIPER AT 70 °C VOLTAGE W V mA W V MAX. MAX. POWER WIPER AT 70 °C VOLTAGE WIPER AT 70 °C VOLTAGE WIPER MAX. POWER WIPER AT 70 °C VOLTAGE VOLT	MAX. MAX. MAX. MAX. CUR. THROUGH WIPER AT 70 °C VOLTAGE WORKING VOLTAGE WIPER AT 70 °C VOLTAGE WIPER	MAX. MAX. MAX. CUR. MAX. POWER NON LINEAR LAW MAX. CUR. MAX. MAX

POWER RATING CHART

MULTIPLE ASSEMBLIES

Standard assemblies can comprise up to 7 modules in addition to the shaft and bushing module.

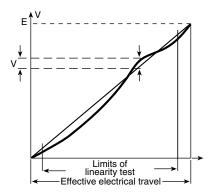
Detents module (CV)

Switch modules (RS or RSI)

Potentiometer modules

Spacer module (EV) to increase the distance between rows of pins from 5.06 mm (0.200) to 10.16 mm (0.400).

Screening module, with ground terminal.


The position of each module is free except the push/push, momentary push and motor which has to be the last module.

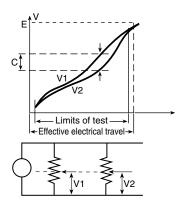
Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

Vishay Sfernice

LINEARITY - CONFORMITY

linearity conformity = $\pm \Delta V \max$

the total applied voltage E


They are measured over 90 % of actual electrical travel (centered).

The independent linearity (conformity for the non linear laws) is the maximum gap ΔV between the actual variation curve and the theorical variation curve the nearest to it. The linearity and the conformity are expressed in percentage of

On request linearity can be guaranteed in linear law.

For example: linearity \pm 2 % + J 145 option (see ordering procedure).

INTERLINEARITY - INTERCONFORMITY

It is the maximum deviation between the actual voltage outputs of 2 or more pot modules in the same assembly. It is expressed as a percentage of the total applied voltage, or preferably in dB attenuation.

Interlinearity is measured between 2 pot modules, over 10 to 90 % of the attenuation.

The interlinearity or interconformity is expressed as a percentage of the total applied voltage :

Or in decibels by comparison between outputs V1 and V2

$$I dB = 20 log \frac{V_1}{V_2}$$

PERFORMANCE							
		TYPICAL VALUES AND DRIFTS					
TESTS	CONDITIONS		P11 CERMET	PA11 CONDUCTIVE PLASTIC			
Load Life	1000 h at + 70 °C	total resistance shift	± 2 %	± 10 %			
Load Life	(90'/30')	contact resistance variation	± 4 %	± 5 %			
Temperature Cycle	5 cycles - 55 °C to 125 °C	total resistance shift	± 0.2 %	± 0. 5 % typical			
Moisture	+ 40 °C 93 % relative humidity	total resistance shift insulation resistance	56 days ± 2 % > 1000 MΩ	21 days ± 5 % > 10 MΩ			
Rotational Life	P11/PA11: 50 000 cycles	total resistance shift contact resistance variation	± 5 % ± 5 %	± 6 % ± 2 %			
Climatic Sequence	Dry heat at + 125 °C/Damp heat Cold - 55 °C/Damp Heat 5 cycles	total resistance shift	± 1 %	-			
Shock	50 G 11 ms 3 shocks - 3 directions	total resistance shift resistance setting change	± 0.2 % ± 0.5 %	± 0.2 % ± 0.5 % typical			
Vibration	10 - 55 Hz 0.75 mm or 10 G 6 hours	total resistance shift voltage setting change	± 0.2 % ± 0.5 % typical	± 0.2 % ± 0.5 % typical			

Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

OPTIONS

MODULES: RS ON/OFF SWITCH RSI CHANGEOVER SWITCH

The position of each module is free.

RS and RSI rotary switches are housed in a standard P11 module size $12.7 \times 12.7 \times 5.08$ mm (0.5" x 0.5" x 0.2"). They have the same terminal styles as the assembled electrical modules.

CAUTION: Because of the switch actuation travel, the potentiometer total electrical travel is reduced to 240° ± 10°

Switch actuation is described as seen from the shaft end.

D: means actuation in maximum CCW position

F: means actuation in maximum CW position

The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$.

MODULES: PUSH/PUSH SWITCH RSPP MOMENTARY/PUSH SWITCH RSMP

The switches are manufactured by ITT, F.U. series (NE18 series available on request).

They have to be the last element of potentiometer and are linked to electrical module by an interface.

RSPP and RSMP switches are available only with P11/PA11 T-Q or 7 series not with P11/PA11 V or 2 series.

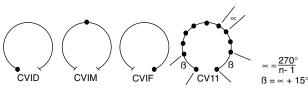
Options:

2 reversing switches F2 4 reversing switches F4

6 reversing switches F6 8 reversing switches F8

Available with shafts R (T), G (Q), CR (7) others shafts on request.

Not available with panel sealed option.


Number of modules before the switch limited to 3 modules.

VALLEY DETENTS

The valley detents mechanism is housed in a standard P11 module. Up to 21 detents position available.

Count detents as follows: 1 for CCW position, 1 for full CW position, plus the other positions forming equal resistance increments (linear taper) - not equal angles.

Available now: CVID - CVIF - CVIM CV3 - CV11 - CV21

SWITCH MODULES

RSD SINGLE POLE SWITCH. NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

RSF SINGLE POLE SWITCH, NORMALLY OPEN

In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

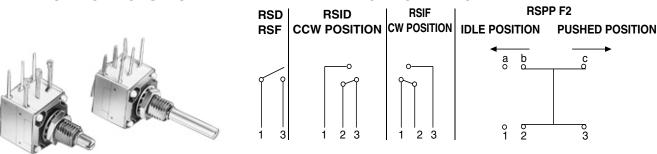
In full CCW position, the contact is made between 3 and 2 and open between 3 and 1. Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3. Switch actuation (CCW direction) reverses these positions.

RSPP F2: PUSH/PUSH SWITCH WITH TWO REVERSING SWITCHES

Idle position: the contact is made between 1 and 2 and a and b. It is open between 2 and 3 and b and c.

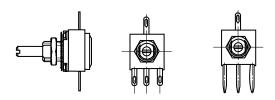

Pushed position: the contact is made between 2 and 3 and b and c. It is open between 1 and 2 and a and b.

Not available on P11V and P11-2.

On request for P11Q and P11-7.

SWITCH SPECIFICATIONS						
MODEL		RS - RSI	F2 to F8			
Switching	Switching Power max.		50 VA υ			
Switching	Current max.	0.25 A 250 V ₀ 0.5 A 30 V =	0.5 A υ			
Max. Curre	ent Through Element	2 A	2 A			
Contact Re	esistance	30 m $Ω$	100 mΩ			
Dielectric	Terminal to Terminal	1000 V _{RMS}	1500 V _{RMS}			
Strength	Terminal to Bushing	2000 V _{RMS}	2000 V _{RMS}			
Max. Volta	Max. Voltage Operation		250 V υ			
	Insulation Resistance Between Contacts		10 ³ ΜΩ			
Life at P m	ax.	10 000 actuations	100 000 actuations			
Minimal Tr	avel	25°	3.3 mm to 4.7 mm			
Operating	Temperature	- 40 °C to + 85 °C	- 20 °C + 70 °C			

ELECTRICAL DIAGRAM


Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

Vishay Sfernice

CENTER TAP "J"

The extra terminal is a solder lug connected at 50 % of electrical travel and situated in the potentiometer module opposite the terminals.

Center tap short circuit 11° of travel.

SHAFTS (see Ordering Information)

The shaft lengths are always measured from the mounting face

Standard shafts are designed by a letter code (one or two digits). Shafts slots are aligned to $\pm 10^{\circ}$ of the wiper position.

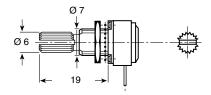
CONCENTRIC SHAFTS

The CC or 0 or 77 concentric shaft versions allies the total flexibility of the P11/PA11 modular system to the advantage of having two separate shafts.

The outer 6 mm or 1/4" or 1/8" dia. shaft drives the modules situated immediately behind the panel, before the spacer module

The inner 3 mm or 1/8" or 0.07" dia. shaft drives the modules situated after the spacer module.

Spacer is available with a choice of two spacer thickness:

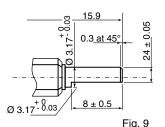

5.08 mm designations: CC, 0, 77

2.54 mm designations: CC-3, 0-3, and 77-3. See dimensional drawings on second page of this data sheet $\,$

CUSTOM SHAFTS

When special shafts are required - flat, threaded ends, special shaft lengths, etc. a drawing is required.

SPLINED SHAFT "I"



FLATTED SHAFT

PA11/P11 - 2 = VHM

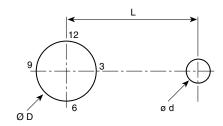
 8 ± 0.5

Ø 6.35 - 0.05

PA11/P11 - 7 = CDM

NEUTRAL MODULE "EN"

Neutral or screen module is housed in a standard P11 module. It is used as a screen between two electrical modules.


The leads can be connected to ground.

LOCATING PEGS (Anti-rotation lugs)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides.

Four set positions are available, clock face orientation: 12, 3, 6, 9.

All P11 bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation log is not necessary.

CODE		EFFECTIVE HIGH				
	VERSION	T-7	V-CC	Q	2-0	PEG
	ø D mm	6.5	10.5	7.5	10	
B24	ø d mm	2	2	2	2	0.7
	L mm	6.2	6.2	6.2	6.2	
Pan	ø d mm	2	2	2	2	0.7
B30	L mm	7.75	7.75	7.75	7.75	0.7
B53	ø d mm	-	3.5	-	3.5	1.1
	L mm	-	13.5	-	13.5	1.1

TRIMMERS T11

See data sheet document No. 51021

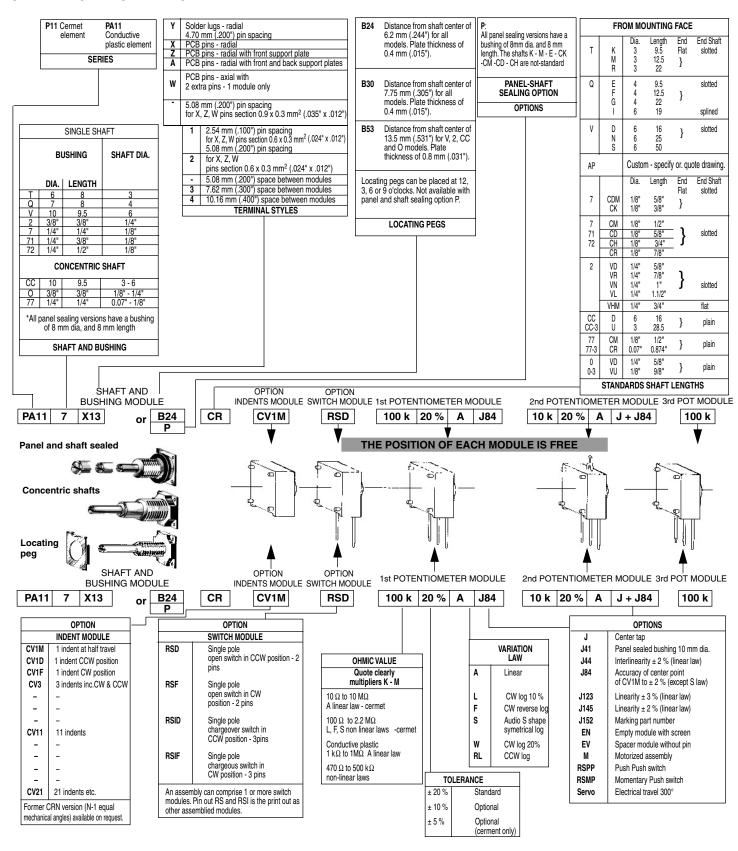
MARKING

POTENTIOMETER MODULE

VISHAY logo, nominal ohmic value (Ω , $k\Omega$, $M\Omega$), two stars identify PA11 version, tolerance in % - variation law, manufacturing date (four digits), "3" for the lead 3.

SWITCH MODULE

Version, manufacturing date (four digits), "c" for common lead.


INDENT MODULE

Version, manufacturing date (four digits).

Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

ORDERING INFORMATION

Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

Vishay Sfernice

SAP PART NUMBERING GUIDELINES	
P 1 1 S 2 T 0 A B S Y 0 MODEL STYLE NB BUSHING PEG SHAFT LEADS OF MODULES	OHMIC VALUE/TOL/LAW OR SPECIAL
See the end of this data book for conversion tables	

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05