Генератор сигналов произвольной формы серии **UTG2000A**

СОДЕРЖАНИЕ

Заголовок	Страница
Введение	1
ГЛАВА 1. Информация по безопасности	1
Термины и символы безопасности	1
Общие правила безопасности	
ГЛАВА 2. Ознакомление с прибором UTG2000A	
Ключевые особенности	
Панели и кнопки управленияПередняя панель	
Задняя панель	
Интерфейс дисплея	
ГЛАВА 3. Быстрое начало работы	5
Общая проверка	
Проверка на повреждения при транспортировке	
Проверка принадлежностейПроверка прибора	5 5
Регулировка ручки для переноски	
Генерация базовых типов сигналов	
Настройка частоты сигнала	5
Настройка амплитуды сигнала	
Настройка напряжения смещения Настройка прямоугольного сигнала	
Настройка импульсного сигнала	
Настройка уровня постоянного напряжения	
Настройка пилообразного сигнала	
Настройка шумового сигнала	
Измерение частотыИспользование встроенной справочной системы	
ГЛАВА 4. Применения повышенной сложности Генерация модулированных сигналов	
Амплитудная модуляция (АМ)	7
Частотная модуляция (FM)	10
Фазовая модуляция (РМ)	
Амплитудная манипуляция (ASK) Частотная манипуляция (FSK)	15 17
Фазовая манипуляция (PSK)	
Широтно-импульсная модуляция (PWM)	
Генерация сигналов со свипированием частоты	
Выбор функции свипирования частоты	
Начальная и конечная частоты свипирования Режим свипирования	
Время свипирования	
Источник пускового сигнала	
Генерация выходного пускового сигнала (Trigger Ou	
Фронт пускового сигнала (Trigger Edge)	
Применения Генерация пакетных сигналов	25 27
Выбор функции генерации пакетных сигналов	
Выбор типа пакета	
Фаза пакета	
Период следования пакетов	
Число циклов в пакетеИсточник пускового сигнала	
Генерация выходного пускового сигнала (Trigger Ot	
Фронт пускового сигнала (Trigger Edge)	
Применения	
Генерация сигналов произвольной формы	
Включение функции генерации произвольных сигна Режим поточечной генерации/воспроизведения	
Выбор сигнала произвольной формы	
Создание и редактирование сигнала произвольной	
формы	31
ГЛАВА 5. Поиск и устранение неисправностей	
Отсутствие изображения на дисплее (чистый экран)	32
Отсутствие сигнала на выходе генератора	32

Проблемы с распознаванием USB-накопителя	32
ГЛАВА 6. Сервисное обслуживание и техническая поддержка	32
Обновление программного обеспечения прибора	32
Приложение А. Заводские настройки	32
Приложение Б. Технические характеристики	33
Приложение В. Перечень принадлежностей	35
Приложение Г. Техническое обслуживание	35

Введение

Уважаемый пользователь!

Благодарим Вас за приобретение изделия компании UNI-T. В целях правильной эксплуатации прибора, прежде чем приступать к работе с ним, внимательно прочтите данную инструкцию по эксплуатации, обратив особое внимание на разделы, касающиеся вопросов безопасности. После прочтения инструкции придерживайтесь ее указаний. Храните инструкцию вместе с прибором или поместите ее в доступное место для использования в буду-

ГЛАВА 1. Информация по безопасности

Термины и символы безопасности

Предупреждающие надписи в инструкции: в данной инструкции вы можете увидеть следующие термины:

______Внимание! указывает на условия, которые могут представлять угрозу пользователю.

Предупреждение: указывает на условия, которые могут представлять угрозу прибору или другому имуществу.

Предупреждающие надписи на приборе: на приборе могут присутствовать следующие надписи:

DANGER («Опасность!») обозначает опасность получения травмы, существующую непосредственно при прочтении надписи.

WARNING («Осторожно!») обозначает потенциальную опасность получения травмы возле надписи.

CAUTION («Замечание») обозначает потенциальную опасность повреждения прибора или другого имущества

Символы на приборе: на приборе могут присутствовать следу-

ющие символы:	
\sim	Переменный ток
ᆂ	Вывод заземления для измерений
\rightarrow	Вывод заземления корпуса
Ф	Кнопка включения/выключения
<u>F</u>	Опасность поражения электрическим током
\triangle	Внимание! Обратитесь к инструкции
	Вывод защитного провода заземления
C€	Зарегистрированная торговая марка Европейского союза
\$	Зарегистрированная торговая марка Канадской ассоциации стандартов
C N10149	Зарегистрированная торговая марка австралий- ского агентства Spectrum Management. Этот сим- вол подтверждает соответствие нормативным требованиям австралийского Положения об электромагнитной совместимости согласно усло- виям Акта об аудиокоммуникациях 1992 г.
40)	Содержит одно или более из шести опасных веществ в концентрации, превышающей предельную допустимую, и Срок экологически безопасного использования (EPUP) 40
1SM1-A	Этот текст показывает, что прибор относится к «промышленным, научным и медицинским изде- лием группы 1 класса А» (CISPER11, Clause 4)
ICES/NMB-001	Этот текст обозначает, что прибор соответствует канадскому стандарту для оборудования, создающего радиопомехи (ICES-001)

Общие правила безопасности

Генератор разработан и произведен в строгом соответствии с требованиями стандартов безопасности для электронных измерительных приборов GB4793, IEC61010-1 по категории перенапряжения II - 600В и уровню загрязнения 2.

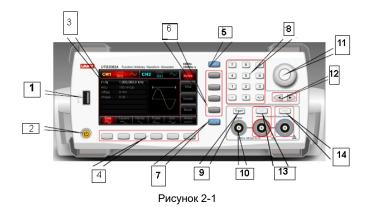
Перед началом работы внимательно прочтите приведенные ниже правила безопасной работы:

- Используйте только шнур питания, разработанный для данного прибора и сертифицированный для использования в вашей стране.
- Данный прибор заземляется защитным проводом заземления шнура питания. Во избежание поражения электрическим током провод заземления должен быть подключен к земле. Пожалуйста, удостоверьтесь, что прибор правильно заземлен, перед подсоединением к любому входному или выходному гнезду.
- Во избежание потенциальных угроз, получения травм и повреждения прибора или подключенного к нему оборудования используйте прибор только указанным в инструкции образом.
- Во избежание возгорания или поражения электрическим током проверьте все предельные допустимые значения и маркировку на приборе и изучите указания данной инструкции перед подключением каких-либо устройств к прибору.
- Не подавайте на прибор напряжение питания выше указанных допустимых значений.
- Все BNC-разъемы на передней панели работают только на
- Проверяйте принадлежности прибора на наличие механических повреждений. При обнаружении каких-либо повреждений заменяйте принадлежность.
- Используйте только принадлежности, поставленные вместе с прибором, и прекращайте их использование при обнаружении повреждений.
- Не подсоединяйте металлические объекты ко входным и выходным разъемам прибора.
- При возникновении сомнений в правильной работе прибора передайте его на осмотр квалифицированным специалистам.
- Не работайте с прибором при открытом корпусе.
- Не работайте с прибором во влажных местах.
- Не работайте с прибором в легко воспламеняемой или взрывоопасной среде.
- Держите поверхность прибора чистой и сухой.

ГЛАВА 2. Ознакомление с прибором UTG2000A

В генераторах функциональных и произвольных сигналов серии UTG2000A используется технология прямого цифрового синтеза (Direct Digital Synthesis — DDS), которая обеспечивает генерацию точных и стабильных сигналов с разрешением до 1 мкГц. Этот тип генераторов функциональных и произвольных сигналов с выгодным соотношением цены и качества и большим набором генерируемых одним прибором функций, гарантирующий точную и стабильную форму выходного сигнала с минимальными искажениями. Прямоугольный сигнал генерируется на высокой частоте и имеет очень короткие передний и задний фронты. Модель UTG2000A совмещает в себе превосходные технические характеристики, простую в использовании панель управления и дружественный графический дисплей, что делает вашу работу быстрее и эффективнее. Это универсальное решение для ваших задач в настоящем и будущем.

Ключевые особенности


- Генерация синусоидального сигнала с частотой до 60 МГц (или до 25 МГц) и разрешением до 1 мкГц.
- Генерация импульсного сигнала с частотой до 25 МГц (или 5 МГц) и регулируемыми временем нарастания и убывания и коэффициентом заполнения.
- Частота дискретизации до 250 МГц (или до 125 МГц) и разрядностью (вертикальным разрешением) 14 бит.
- 6-разрядный прецизионный частотомер, совместимый с логическим TTL-сигналом.
- Два стандартных выходных канала с независимой генерацией.
- 1 Мб (или 8 Кб) памяти для сохранения произвольной формы сигнала и 48 типов формы сигнала, сохраненных в энергонезависимой памяти.
- Различные типы модуляции сигнала: амплитудная модуляция (АМ), частотная модуляция (FM), фазовая модуляция (PM), амплитудная манипуляция (ASK), частотная манипуляция (FSK), фазовая манипуляция (PSK), широтно-импульсная модуляция (PWM).

- Высокоэффективное программное обеспечение, позволяющее работать на персональном компьютере.
- 4,3-дюймовый цветной ТГТ-дисплей с высоким разрешением.
- Стандартные интерфейсы: USB-хост, USB-устройство, интерфейс локальной сети (LAN) в качестве дополнительной опции.
- Два канала могут использоваться одновременно или независимо: внутренняя/внешняя модуляция, внутренний/внешний/ ручной запуск.
- Поддерживаются режимы свипирования частоты и генерации пакетных сигналов.
- Удобный многофункциональный поворотный регулятор и цифровая клавиатура.

Примечание: модель UT

Панели и кнопки управления Передняя панель

Генераторы функциональных и произвольных сигналов серии UTG2000A оснащены передней панелью управления с наглядным и интуитивно понятным дизайном, обеспечивающим простую работу (см. Рисунок 2.1)

- 1) USB-порт
- 2) кнопка включения/выключения прибора
- 3) интерфейс дисплея
- 4) операционные кнопки меню
- 5) кнопка меню **Menu**
- 6) функциональные кнопки меню
- 7) кнопка служебных программ Utility
- 8) кнопки цифрового ввода
- 9) кнопка ручного триггера
- 10) разъем выхода синхросигнала
- 11) многофункциональный регулятор/кнопка
- 12) стрелочные кнопки
- 13) выходной разъем и кнопка управления канала СН1
- 14) выходной разъем и кнопка управления канала СН2

1. USB-порт

Генератор поддерживает работу с USB-флеш-накопителями, работающими в форматах FAT16 и FAT32. Через этот USB-порт, генератор может считывать любые сохраненные формы сигналов с USB-флеш-накопителя или сохранять на него текущие данные.

2. Кнопка включения/выключения прибора

Нажмите эту кнопку для включения или выключения генератора. При включении кнопка загорится (оранжевым цветом), указывая что генератор включает интерфейс и затем функциональный дисплей. Для того чтобы избежать отключений питания, вызванных случайным нажатием на эту кнопку, ее устройство предусматривает нажатие и удержание ее в течение 0,5 с для выключения генератора. Подсветка кнопки и дисплей выключаются одновременно после отключения питания.

Примечание: Кнопка включения/выключения питания срабатывает только после того, как генератор надлежащим образом подключен к источнику питания, и его главный выключатель питания на задней панели установлен в положение "I". Для отключения источника питания переменного тока от генератора необходимо установить главный выключатель в положение "О" или отключить шнур питания.

3. Интерфейс дисплея

Генератор оснащен 4,3-дюймовым цветным ТFТ-дисплеем с высоким разрешением, на котором отображается состояние выходных сигналов, меню и прочая важная информация о каналах СН1

и CH2 с использованием различных цветов, что облегчает взаимодействие пользователя с прибором и обеспечивает эффективность вашей работы.

4. Операционные кнопки меню

Операционные кнопки (снизу от дисплея) служат для переключения и выбора опций, соответствующих каждой из них. Для настройки параметров они могут функционировать вместе с клавиатурой цифрового ввода или многофункциональным поворотным переключателем или стрелочными кнопками.

5. Кнопка Мепи

При нажатии на эту кнопку на дисплее появляются четыре функциональные метки: Wave, Mod, Sweep и Burst. Для того чтобы выбрать одну из этих функций, нажмите функциональную кнопку меню, соответствующую требуемой метке.

6. Функциональные кнопки меню

Эти кнопки (справа от дисплея) служат для выбора соответствующих им меток функций, отображаемых на дисплее.

7. Кнопка Utility

При нажатии этой кнопки становятся доступны четыре функциональные метки: CH1Setting, CH2Setting, I/O (или Freq Meter) и System, Выделенная метка (белые символы на сером фоне) сопровождается метками в нижней части дисплея. Эти метки дают дополнительную информацию о назначении выделенной метки. При нажатии на операционные кнопки снизу от дисплея, соответствующие этим суб-меткам выполняется переход к конкретным настройкам или информации, например, к настройке каналов (например: установке выходного сопротивление в пределах 1 Ом — 10 КОм или на высокое значение), к установке предела напряжения или выходного синхросигнала, выбору языка, параметров включения, настройке подсветки, сохранению и вызову из памяти данных, системной информации, оглавлению справки и т.д.

8. Клавиатура цифрового ввода

Клавиатура цифрового ввода служит для ввода значений параметров с использованием кнопок с цифрами 0 \sim 9, десятичной точкой "." и кнопок "+/-". Десятичная точка "." может использоваться для быстрого переключения между единицами измерения. Стрелочные кнопки можно использовать для возврата и удаления цифры, стоящей перед текущей позицией ввода.

9. Кнопка ручного запуска

Кнопка используется для установки ручного запуска. Ручной запуск включен, когда подсветка кнопки мигает.

10. Разъем выхода синхросигнала

Разъем служит для вывода синхросигнала для всех стандартных функций (кроме постоянного тока и шума) в нормальном режиме.

11. Многофункциональный поворотный регулятор/кнопка

Многофункциональный поворотный регулятор служит для установки числовых значений (увеличение при вращении по часовой стрелке) или в качестве аналога стрелочных кнопок. Нажатие на регулятор, как на кнопку, позволяет выбирать функции или подтверждать введенные значения параметров.

12. Стрелочные кнопки

Стрелочные кнопки служат для прокрутки или удаления цифры текущего ввода или перемещения курсора (вправо или влево) при работе с многофункциональным переключателем для настройки параметров.

13. Выходной разъем и кнопка управления канала СН1

Служат для быстрого переключения текущего канала, отображаемого на экране (если выделена метка СН1, значит, в текущий момент выбран канал СН1, и все отображаемые и настраиваемые параметры относятся к нему). Если текущий канал — СН1 (выделена метка СН1), то вы можете нажать кнопку СН1, чтобы включить или выключить выходной сигнал в канале СН1, или нажать кнопку Utility, чтобы вызвать функцию СН1 Setting и использовать операционные кнопки для настройки параметров канала СН1. Во включенном состоянии кнопка СН1 горит, текущий режим генерации сигнала отображается справа от метки СН1 ("wave", "Mod", "Sweep" или "Burst"), и выходной канал СН1 включен. Если кнопка СН1 выключена, выключается и ее подсветка, а справа от метки СН1 появляется иконка «Off», показывающая, что выход канала СН1 отключен.

14. Выходной разъем и кнопка управления канала СН1

Служат для быстрого переключения текущего канала, отображаемого на экране (если выделена метка CH2, значит, в текущий момент выбран канал CH2, и все отображаемые и настраиваемые параметры относятся к нему). Если текущий канал — CH2 (выделена метка CH2), то вы можете нажать кнопку CH2, чтобы включить или выключить выходной сигнал в канале CH2, или нажать кнопку Utility, чтобы вызвать функцию CH2 Setting и использовать операционные кнопки для настройки параметров канала CH1. Во включенном состоянии кнопка CH2 горит, текущий режим генерации сигнала отображается справа от метки CH2 ("wave", "Mod", "Sweep" или "Burst"), и выходной канал CH2 включен. Если кнопка CH2 выключается и ее подсветка, а справа от метки CH2 появляется иконка «Off», показывающая, что выход канала CH2 отключен.

Задняя панель

Ознакомьтесь с деталями задней панели на Рисунке 2-2.

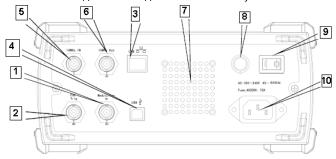


Рисунок 2-1

- 1. Разъем для подачи внешнего сигнала аналоговой модуляции.
- 2. Разъем для подачи внешнего сигнала цифровой модуляции или подключения частотомера.
- 3. Разъем интерфейса локальной сети LAN.
- 4. USB-порт.
- 5. Входной разъем для внешнего сигнала 10 МГц.
- 6. Выходной разъем для вывода сигнала 10 МГц.
- 7. Вентилятор.
- 8. Предохранитель.
- 9. Главный выключатель питания.
- 10. Розетка для подключения кабеля питания от электросети.

1. Разъем для подачи внешнего сигнала аналоговой модуля-

Разъем используется для ввода модулирующего сигнала при следующих при амплитудной (AM), частотной (FM), фазовой (PM) или широтно-импульсной (PWM) модуляции при выборе внешнего источника сигнала. Глубина модуляции или величина отклонения (частоты, фазы или коэффициента заполнения) при этом управляется уровнем сигнала ±5V, подаваемого на этот входной разъем.

2. Разъем для подачи внешнего сигнала цифровой модуляции или подключения частотомера.

Разъем используется для ввода модулирующего сигнала при амплитудной (ASK), частотной (FSK) или фазовой (PSK) манипуляции, при выборе внешнего источника сигнала. Выходная амплитуда, частота и фаза при этом управляются уровнем сигнала, подаваемого на этот входной разъем. В режимах свипирования (Sweep) и генерации пакетного сигнала (Burst) Sweep или режимов при выборе внешнего источника модулирующего сигнала разъем используется для приема поляризованного импульса, который управляет свипированием или формированием пакета из N импульсов. Если же генерируется стробируемый пакет импульсов, разъем служит для ввода стробированного сигнала. При использовании функции частотомера этот разъем также используется для ввода сигнала (совместимого с логическими TTL-уровнями) или для вывода пускового сигнала в режиме свипирования или пакетной генерации. Если выбран внешний источник пускового сигнала, опция Trigger Out в перечне параметров неактивна, поскольку этот разъем не может одновременно использоваться для ввода и вывода сигнала.

3. Разъем интерфейса локальной сети LAN

Разъем LAN служит для подключения генератора к локальной сети для дистанционного управления.

4. USB-порт

Этот разъем служит для подключения генератора к персональному компьютеру с помощью кабеля USB. Вы можете управлять генератором с компьютера. Например, эту возможность можно использовать для обновления системной программы генератора, чтобы прибор работал на последней версии программного обеспечения, выпущенной компанией-производителем.

5. Входной разъем для внешнего сигнала 10 МГц

Разъем служит для ввода внешнего опорного сигнала с частотой 10 МГц, если для генератора выбран внешний источник тактовых импульсов. Если вы хотите синхронизировать между собой несколько генераторов UTG2000A или синхронизировать генератор с внешним опорным сигналом 10 МГц, используйте этот входной разъем.

6. Выходной разъем для вывода сигнала 10 МГц

Разъем служит для вывода опорного сигнала с частотой 10 МГц после того, если для генератора выбран внутренний источник тактовых импульсов.

7. Вентилятор

Расположенный за этими отверстиями вентилятор обеспечивает воздушное охлаждения генератора. Не закрывайте эти отверстия.

8. Предохранитель

Предохранитель служит для предотвращения критических повреждений генератора при резком повышении тока питания при разрядах молнии или выходе из строя компонентов. В этом случае предохранитель плавится, отсоединяя блок питания от входного переменного тока, если он превышает 2 А.

9. Главный выключатель питания

Если выключатель стоит в положении «I», питание генератора подключено. При положении выключателя «О» питание от переменного тока электросети отключено, и выключатель «On/Off» на передней панели не работает.

10. Розетка для подключения кабеля питания от электросети

Технические параметры электросети переменного тока для питания генератора: 100-240 В, 45-440 Гц. Характеристики плавкого предохранителя: 250 В / 2 А.

Интерфейс дисплея

Ознакомьтесь с деталями интерфейса дисплея на Рисунке 2-3.

Рисунок 2-3

Подробное описание:

■ Информация о канале СН1: Когда этот элемент дисплея выделен красным фоном, это означает, что отображается только информация о канале СН1, и доступна настройка параметров канала СН1. Если этот элемент не выделен, изменить параметры сигнала в канале СН1 нельзя. Для включения опции «Информация о канале CH1» напрямую нажмите кнопку CH1. В верхней части элемента дисплея с информацией о канале СН1 есть значок "Limit", который показывает ограничение амплитуды выходного сигнала и отображается белым цветом, если он включен, и серым цветом, если он выключен. В нижней части «Информации о канале CH1» указано значение импеданса, на согласование с которым настроен выход канала: (регулируется в пределах 10м ~ 10 кОм, или устанавливается на высокий импеданс, по умолчанию равный 50 Ом). В правой части этого элемента дисплея отображается эффективная форма текущего сигнала (либор непосредственно форма сигнала, либо значок «Mod», «Sweep»

или «Burst»), или серым цветом выводится сообщение «Off», если выходной сигнал в канале СН1 выключен.

- Информация о канале СН2: Когда этот элемент дисплея выделен синим фоном, это означает, что отображается только информация о канале СН2, и доступна настройка параметров канала СН2. Если этот элемент не выделен, изменить параметры сигнала в канале CH2 нельзя. Для включения опции «Информация о канале CH2» напрямую нажмите кнопку CH2. В верхней части элемента дисплея с информацией о канале СН2 есть значок "Limit", который показывает ограничение амплитуды выходного сигнала и отображается белым цветом, если он включен, и серым цветом, если он выключен. В нижней части «Информации о канале CH2» указано значение импеданса, на согласование с которым настроен выход канала: (регулируется в пределах 10м ~ 10 кОм, или устанавливается на высокий импеданс, по умолчанию равный 50 Ом). В правой части этого элемента дисплея отображается эффективная форма текущего сигнала (либор непосредственно форма сигнала, либо значок «Mod», «Sweep» или «Burst»), или серым цветом выводится сообщение «Off», если выходной сигнал в канале СН2 выключен.
- Функции кнопок: Эти элементы дисплея служат для индикации текущих функций, соответствующим функциональным кнопкам меню, расположенным справа от дисплея, и операционным кнопкам, расположенным снизу от дисплея.
- Цветовая индикация: фон меток, соответствующих выбранным функциям, будет иметь тот же цвет, что и фон информации о выбранном канале, или системный серый цвет, а значки и текст меток будут белыми. Прочие метки будут иметь серый текст и значки на темном фоне.
- 1) Метки в правой части дисплея: Метка функции выбрана, если она подсвечена цветным фоном. При этом в нижней части экрана отображаются до шести параметров, которые относятся к выбранной функции и настраиваются соответствующими операционными кнопками, расположенными снизу от дисплея.
- Примечание: если выбранная опция меню, указанная справа, содержит более одного подкаталога, то опции, отображаемые в нижней части дисплея не обязательно являются подкаталогами этой опции. Например, если подсвечена опция функциональной кнопки Туре, то в нижней части дисплея будут отображаться опции с различными типами форм сигналов, которые составляют подкаталог опции Туре. Если теперь нажать кнопку Menu, то будет подсвечена опция Wave, но опции в нижней части дисплея не изменятся, что не означает что это подкаталог опции Wave, поскольку подкаталоги опции Wave – это Type и Params. Если функция, выбранная в правой части дисплея, включает более 6 опций (то есть более 6 субметок операционных кнопок в нижней части дисплея, в нижнем углу метки этой функции будет отображаться значок 🔼), нажмите соответствующую этой функции кнопку еще раз, чтобы получить доступ к следующему экрану с дополнительными опциями.
- 2) Метки в нижней части дисплея: Когда опции в нижней части дисплея принадлежат подкаталогу опции Туре в правой части дисплея, они будут подсвечиваться при их выборе. Если опции в нижней части дисплея являются подкаталогами опции Params в правой части дисплея (или подкаталогами одной из опций CH1Setting, CH2Setting, I/O (or Freq Meter) или опции System, появляющейся при нажатии кнопки **Utility**), то они будут соответствовать параметрам в списке параметров и при их выборе также выделяются по краям тем же цветом, которым выделяется выбранный канал (или серым цветом при настройке системы) и белым цветом текста (текст параметров в списке становится белым при их выборе). Если в этот момент нажать операционные кнопки или многофункциональный регулятор, опции будут выделяться цветом, указывающим, что соответствующий параметр готов к изменению. Настройте значение этого параметра с помощью многофункционального регулятора и нажмите регулятор, чтобы подтвердить выбранное значение и выйти из режима настройки этого параметра. Если опция в нижней части экрана выбрана, но вы еще не переключились в режим настройки соответствующего параметра, то вращение многофункционального регулятора или нажатие стрелочных кнопок позволяет переключаться между опциями и, соответственно, между параметрами из списка параметров. Для изменения значения числового параметра вы можете также использовать клавиатуру цифрового ввода (кнопку с левой стрелкой можно использоваться для стирания цифры перед текущей позицией ввода), выбрать требуемую единицу измерения в нижней части дисплея и нажать соответствующую операционную кнопку или многофункциональный регулятор для под-

тверждения введенного значения и выхода из режима настройки данного параметра.

■ Список параметров сигнала: Все параметры, относящиеся к текущему сигналу, будут перечислены в этой области дисплея. Если один из параметров выделяется белым цветом, это означает, что его можно настроить, используя операционные кнопки меню, клавиатуру цифрового ввода, стрелочных кнопок и многофункционального регулятора.

Если текущий символ имеет тот же цвет, что и текущий канал (белый при настройке системы), это указывает, что параметр готов для редактирования с помощью стрелочных кнопок или клавиатуры цифрового ввода или многофункционального регулятора.

■ Область отображения формы сигнала: Служит для графического отображения формы сигнала с текущими настройками канала. Вы можете определить, какой канал выбран, по цвету и по выделенной области с информацией о канале СН1 / СН2, а параметры в левой части дисплея относятся к этому сигналу).

Примечание: Форма сигнала не отображается при настройке системы, поэтому область отображения формы сигнала используется для списка параметров.

ГЛАВА 3. Быстрое начало работы

Общая проверка

Описанные ниже процедуры следует провести после получения нового генератора функциональных / произвольных сигналов.

Проверка на повреждения при транспортировке

Если картон упаковки или защитные пенопластовые панели имеют серьезные повреждения, немедленно обратитесь к дистрибьютору или в местное представительство компаниипроизводителя.

Если прибор получил повреждения при транспортировке, сохраняйте упаковку и проинформируйте транспортную компанию и дистрибьютора, чтобы дистрибьютор организовал ремонт или замену прибора.

Проверка принадлежностей

Принадлежности, поставляемые с моделью UTG2000A, включают: кабель для подключения к электросети (в зависимости от стандартов страны / региона назначения); USB-кабель — 1 шт.; BNC-кабель (1 м) - 2 шт.; инструкция по эксплуатации - 1 шт.; компакт-диск - 1 шт.

Если какая-либо из принадлежностей отсутствует или повреждена, свяжитесь с дистрибьютором или местным представительством производителя.

Проверка прибора

Если вы обнаружили внешние повреждения генератора, или нарушения в нормальной работе или при прохождении тестов на качество работы, свяжитесь с дистрибьютором или местным представительством производителя.

Регулировка ручки для переноски

Генераторы сигналов произвольной формы серии UTG2000A оснащены ручкой для переноски, которую можно легко отрегулировать. Чтобы отрегулировать ручку для переноски, возьмите ручку с двух сторон и потяните наружу. Вы можете установить ручку в желаемое положение. Обратитесь к Рисунку 3-1.

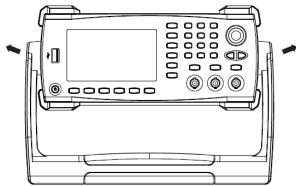
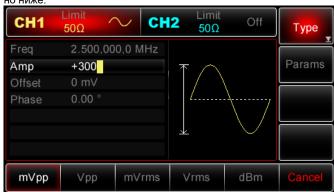


Рисунок 3-1

Генерация базовых типов сигналов Настройка частоты сигнала

При включении питания генератор по умолчанию настраивает синусоидальный сигнал с размахом 100 мВ на частоте 1 кГц (при выходном сопротивлении 50 Ом). Чтобы изменить частоту на значение 2,5 МГц, выполните следующие действия, как показано ниже:

- 1. Нажмите кнопки **Menu** → Wave → Params → Freq (если опция Freq не появится в нижней части дисплея после нажатия кнопки Params, нажмите Params еще раз, чтобы перейти к следующему экрану). При изменении частоты та же частота используется, если ее текущее значение приемлемо для нового применения. Чтобы задать период сигнала, нажмите кнопку Freq еще раз для переключения между параметрами Period и Freq.
- 2. Введите требуемое значение 2,5 с помощью клавиатуры цифрового ввода.


3. Выберите требуемую единицу измерения.

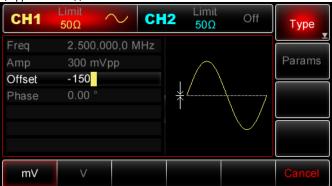
Нажмите операционную кнопку, соответствующую требуемой единице измерения. После выбора единицы измерения прибор начинает генерировать сигнал с отображаемой на дисплее частотой (если выход канала включен). В приведенном примере нужно нажать операционную кнопку МНz.

Примечание: Для установки значения частоты вы также можете использовать многофункциональный регулятор и стрелочные

Настройка амплитуды сигнала

При включении питания генератор по умолчанию настраивает синусоидальный сигнал с размахом 100 мВ на частоте 1 кГц (при выходном сопротивлении 50 Ом). Чтобы установить амплитуду на значение 300 мВ, выполните следующие действия, как показано ниже:

- 1. Нажмите кнопки **Menu** → Wave → Params → Amp (если опция Amp не появится в нижней части дисплея после нажатия кнопки Params, нажмите Params еще раз, чтобы перейти к следующему экрану). При изменении амплитуды та же амплитуда используется, если ее текущее значение приемлемо для нового применения. Нажмите функциональную кнопку Amp еще раз, чтобы быстро получить доступ к различным величинам, характеризующим амплитуду (Vpp, Vrms и dBm)
- 2. Введите требуемое значение 300 с помощью клавиатуры цифрового ввода.
- 3. Выберите требуемую единицу измерения.


Нажмите операционную кнопку, соответствующую нужной единице измерения. После выбора единицы измерения прибор начинает генерировать сигнал с отображаемой на дисплее амплитудой (если выход канала включен). В приведенном примере нужно нажать операционную кнопку mVpp.

Примечание: Для установки значения частоты вы также можете использовать многофункциональный регулятор и стрелочные кнопки.

Настройка напряжения смещения

При включении питания генератор по умолчанию настраивает синусоидальный сигнал с нулевой постоянной составляющей (при выходном сопротивлении 50 Ом). Для того чтобы установить смещение постоянной составляющей -150 мВ, выполните следующие действия:

- 1. Нажмите кнопки **Menu** → Wave → Params → Offset (если опция Offset не появится в нижней части дисплея после нажатия кнопки Params, нажмите Params еще раз, чтобы перейти к следующему экрану). При изменении амплитуды та же амплитуда используется, если ее текущее значение приемлемо для нового применения. Нажмите функциональную кнопку Offset еще раз, и вместо настройки сигнала путем установки амплитуды и смещения, вы сможете установить верхний уровень (Мах.) и нижний уровень (Міn.) сигнала, что бывает очень удобно при работе с цифровой техникой.
- 2. Введите требуемое значение -150 мВ с помощью клавиатуры цифрового ввода.

3. Выберите требуемую единицу измерения.

Нажмите операционную кнопку, соответствующую нужной единице измерения. После выбора единицы измерения прибор начинает генерировать сигнал с отображаемым на дисплее смещением постоянной составляющей (если выход канала включен). В приведенном примере нужно нажать операционную кнопку mV. Примечание: Для установки значения напряжения смещения вы также можете использовать многофункциональный регулятор и стрелочные кнопки.

Настройка прямоугольного сигнала

Коэффициент заполнения прямоугольного сигнала показывает долю периода, в течение которой поддерживается высокий уровень сигнала (при условии, что сигнал не инвертирован).

При включении питания коэффициент заполнения прямоугольного сигнала по умолчанию устанавливается на значение 50%. Снизу коэффициент заполнения ограничивается минимальным значением длительности импульса 20нс (или 40нс). Для того чтобы установить для прямоугольного сигнала частоту 1 кГц, амплитуду 1.5Vpp, смещение постоянной составляющей 0 В и коэффициент заполнения значение 70% выполните следующие действия:

Нажмите кнопки **Menu** \rightarrow Wave \rightarrow Type \rightarrow Square \rightarrow Params (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). Для того чтобы установить требуемые значения параметров, нажмите кнопку, соответствующую параметру, затем

введите требуемое значение и, наконец, выберите требуемую единицу измерения.

Примечание: Для настройки параметров также можно использовать многофункциональный регулятор и стрелочные кнопки.

Настройка импульсного сигнала

Ширина импульсного сигнала представляет собой промежуток времени от уровня 50% нарастающего фронта до уровня 50% следующего за ним ниспадающего фронта (при условии, что сигнал не инвертирован). Прибор позволяет настроить генерацию импульсного сигнала с различной шириной импульса и временем нарастания / убывания фронта импульса. При включении питания коэффициент заполнения импульсного сигнала по умолчанию составляет 50%, а время нарастания / убывания фронтов — 1 мс. Для того, чтобы установить для импульсного сигнала периос 2 мс, амплитуду 1,5 В (Vpp), смещение постоянной составляющей 0В, коэффициент заполнения (ограниченный минимальным значением длительности импульса 20нс (или 40нс)) 25%, время нарастания переднего фронта 200 мкс и время убывания заднего фронта 200 мкс, выполните следующие действия:

. Нажмите кнопки **Menu** ightarrow Wave ightarrow Type ightarrow Square опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). Затем нажмите кнопку Freq, чтобы переключиться с частоты на период. Затем введите значение периода и выберите нужную единицу измерения. Для ввода значения коэффициент заполнения, вы можете нажать кнопку, соответствующую 25% в нижней части экрана, чтобы непосредственно ввести указанное значение, или ввести число 25 и затем нажать %, чтобы завершить ввод. Чтобы настроить время нарастания переднего фронта, нажмите кнопку Params еще раз или поверните многофункциональный регулятор по часовой стрелке для перехода к следующему экрану, на котором будет присутствовать требуемая опция (если опция выбрана, ее края выделены тем же цветом, что и текущий канал, а если опция находится в состоянии редактирования, она подсвечивается целиком, см. раздел «Операционные кнопки меню»). Затем нажмите кнопку TailEdge, введите нужное значение и выберите нужную единицу измерения.

Примечание: Для настройки параметров также можно использовать многофункциональный регулятор и стрелочные кнопки.

Настройка уровня постоянного напряжения

Фактически уровень постоянного напряжения изменяется в зависимости от смещения постоянной составляющей, которое было установлено ранее. Таким образом, описанная выше процедура установки смещения постоянной составляющей уже привела к изменению установленного по умолчанию уровня постоянного напряжения (напряжения смещения). При включении питания уровень постоянного напряжения равен 0 В. Для установки уровня постоянного напряжения 3 В выполните следующие действия: 1. Нажмите кнопки **Menu** → Wave → Type → DC (если опция Type не выделена после нажатия кнопки Wave, нажмите функциональную кнопку Type дважды: первый раз, чтобы выделить опцию, и второй раз, чтобы отобразить перейти к следующему экрану).

2. Введите число 3 с помощью клавиатуры цифрового ввода.

3. Выберите требуемую единицу измерения.

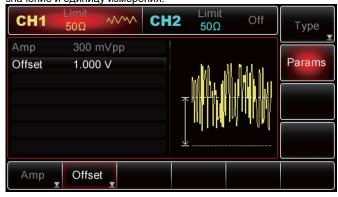
Нажмите функциональную клавишу соответствующую требуемой единице. После выбора единицы измерения прибор начинает генерировать сигнал с отображенным напряжением смещения постоянной составляющей (если выход канала включен). В этом примере требуется нажать операционную кнопку V.

Примечание: Для настройки уровня постоянного напряжения (напряжения смещения) также можно использовать многофункциональный регулятор и стрелочные кнопки.

Настройка пилообразного сигнала

Параметр «симметрия» (symmetry) пилообразного сигнала показывает долю периода, в течение которой сигнал нарастает. При включении прибора симметрия по умолчанию устанавливается равной 100%. Чтобы установить для пилообразного сигнала частоту 10 кГц, амплитуду 2 В, смещение постоянной составляющей 0 В и симметрию 50%, выполните следующие действия:

Нажмите кнопки **Menu** → Wave → Type → Ramp → Params (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). Для того чтобы установить требуемые значения параметров, нажмите на соответствующую кнопку, а затем введите нужное значение и нужную единицу измерения. При вводе значения симметрии, вы можете непосредственно ввести требуемое значение, нажав операционную кнопку, соответствующую опции 50% или ввести с клавиатуры цифрового ввода число 50 и нажать кнопку %, чтобы завершить ввод.


Примечание: Для настройки параметров также можно использовать многофункциональный регулятор и стрелочные кнопки.

Настройка шумового сигнала

Стандартный гауссов шум, генерируемый прибором UTG2000A, по умолчанию имеет амплитуду 100 мВ (mVpp) и смещение постоянной составляющей 0 В. При измерении амплитуды и смещения постоянной составляющей других типов сигналов были изменены, установленный по умолчанию шумовой сигнал также изменяется соответствующим образом. Для шумового сигнал доступно изменение только амплитуды и смещения постоянной составляющей. Чтобы установить для стандартного гауссова шума амплитуду 300 мВ (mVpp) и смещение постоянной составляющей 1 В, выполните следующие действия:

Нажмите кнопки **Menu** \to Wave \to Type \to Noise \to Params (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). Для того чтобы установить требуемые значения пара-

метров, нажмите соответствующую кнопку и введите требуемые значение и единицу измерения.

Примечание: Для настройки параметров также можно использовать многофункциональный регулятор и стрелочные кнопки.

Измерение частоты

Генератор позволяет измерять частоту сигнала, совместимого с логическими TTL-уровнями, в диапазоне от 100 мГц до 200 МГц, а также коэффициент заполнения. При использовании функции частотомера, TTL-сигнал подается через вход сигнала внешней цифровой модуляции или через порт частотомера (разъем FSK Trig/CNT). При нажатии на кнопки **Utility** → Freq Meter измеренные частота, период и коэффициент заполнения отображаются в списке параметров, как и обычно, когда на вход прибора не подается сигнал. Текущая частота отображается, только если на вход сигнала внешней цифровой модуляции или на порт частотомера подается сигнал, совместимый с логическими TTL-уровнями.

Использование встроенной справочной системы

Встроенная справочная система предоставляет контекстнозависимую справку для любой кнопки на лицевой панели или программной кнопки меню. Организация перечня разделов справки также обеспечивает быстрое получение информации об операциях с использованием элементов управления лицевой панели.

1. Просмотр справочной информации для функциональной кнопки:

Нажмите и удерживайте любую кнопку, например, Menu.

Если относящаяся к ней информация слишком объемная, чтобы отобразиться на одном экране полностью, нажмите

функциональную кнопку « >> или поверните многофункциональный регулятор, чтобы переключите на следующий экран. Нажмите кнопку Return, чтобы выйти из справочной системы.

2. Просмотреть список разделов справки

Нажмите кнопки **Utility** → **S**ystem → **S**ystem → **Help**, чтобы открыть перечень имеющихся разделов справки. справки. Выберите пункт "Get HELP on any key" ("Получить справку о любой кнопке"). Нажмите функциональную кнопку **Return** для выхода.

3. Просмотр справочной информации к отображающимся на дисплее сообщениям.

При превышении предельных значений или возникновении недопустимой конфигурации параметров генератор выводит на дисплей соответствующее сообщение. Встроенная справочная система предоставляет дополнительную информацию о последних отображенных сообщениях. Нажмите кнопки **Utility** → System → System → Help, для просмотра перечня имеющихся разделов справки. Затем выберите «View the last message displayed» ("Просмотреть последнее отображенное сообщение"). Нажмите Return для выхода.

Примечание:

Справка на местном языке: Встроенная справочная система доступна на упрощенном китайском, традиционном китайском и английском языках. Все сообщения, контекстно-зависимая справочная информация и оглавление доступны на выбранном языке. Для выбора местного языка нажмите Utility — System — Language, а затем нажмите стрелочную кнопку или поверните многофункциональный регулятор, чтобы выбрать требуемый язык.

ГЛАВА 4. Применения повышенной сложности

Генерация модулированных сигналов Амплитудная модуляция (АМ)

В режиме амплитудной модуляции модулированный сигнал складывается из несущего и модулирующего сигналов. Амплитуда несущего сигнала варьируется модулирующим сигналом. Сигна-

лы в каналах генератора CH1 и CH2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.

Выбор амплитудной модуляции

Нажмите кнопки **Menu** → Mod → Type → AM, чтобы включить функцию амплитудной модуляции (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). При включенном режиме амплитудной модуляции (AM) прибор будет генерировать модулированный сигнал в соответствии с текущими настройками модулирующего и несущего сигналов.

Выбор несущего сигнала

Форма несущего сигнала в режиме амплитудной модуляции может быть выбрана из следующих функций: синусоидальный, прямоугольный, пилообразный или произвольный сигнал (за исключением постоянного уровня напряжения). По умолчанию в качестве несущего устанавливается синусоидальный сигнал. Когда включен режим амплитудной модуляции, нажмите кнопку Carrier, чтобы перейти к выбору типа несущего сигнала.

Настройка частоты несущего сигнала

Диапазоны частот несущей могут быть различным и зависят от типа выбранной функции. По умолчанию для всех функций устанавливается частота 1 кГц. Более подробная информация содержится в следующей таблице:


	Частота					
	UTG2	062A	UTG	UTG2025A		
Функции	минималь-	максималь-	мини-	макси-		
	ное значе-	ное значе-	мальное	мальное		
	ние	ние	значение	значение		
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц		
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц		
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц		
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц		
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц		

Для установки несущей частоты вначале выберите форму несущего сигнала, а затем настройте параметры с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения ввода.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме амплитудной модуляции по умолчанию установлен внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима амплитудной

модуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params ightarrow Source ightarrow Ext.

1) Внутренний источник

При выборе внутреннего источника модулирующий сигнал может быть следующих типов: синусоидальный, прямоугольный, нарастающий пилообразный, убывающий пилообразный, произвольный, шумовой. По умолчанию при включении режима амплитудной модуляции в качестве модулирующего устанавливается синусоидальный сигнал. Чтобы выбрать другой тип модулирующего сигнала, вначале включите интерфейс амплитудной модуляции, а затем поверните многофункциональный регулятор или нажмите функциональные кнопки Params → Shape:

- Прямоугольный сигнал (Square) с коэффициентом заполнения 50%
- Нарастающий пилообразный сигнал (UpRamp) с симметрией 100%
- Убывающий пилообразный сигнал (DownRamp) с симметрией 0%
- Сигнал произвольной формы (Arbitrary): когда в качестве модулирующего выбран сигнал произвольной формы, производится автоматическая выборка сигнала с ограничением до 1 kpts
- Шумовой сигнал (Noise): белый гауссов шум

2) Внешний источник

При выборе внешнего источника модуляции форма и частота модулирующего сигнала скрыты из списка параметров, и несущая модулируется внешним сигналом. Глубина амплитудной модуляции управляется уровнем сигнала ±5 В, поданного на разъем для внешнего сигнала аналоговой модуляции (Modulation In) на задней панели генератора. Например, если глубина модуляции в списке параметров установлена на 100 %, то когда подается внешний модулирующий сигнал +5 В, амплитуда выходного амплитудно-модулированного сигнала примет максимальное значение. Если же уровень модулирующего сигнала составляет -5 В, выходной сигнал будет иметь минимальную амплитуду.

Установка частоты модулирующего сигнала

Установка частоты модулирующего сигнала доступна при выборе внутреннего источника модуляции. При включении режима амплитудной модуляции частота модулирующего сигнала по умолчанию устанавливается равной 100 Гц. Для изменения частоты включите интерфейс режима амплитудной модуляции, а затем с помощью многофункционального регулятора и стрелочных кногок или нажатием функциональных кнопок Рагаты → МоdFreq выберите значение частоты в диапазоне 2 мГц ~ 50 кГц. Если выбран внешний источник сигнала, опции частоты и формы сигнала не отображаются в списке параметров. В этом случае несущая модулируется внешним сигналом с частотой в диапазоне 0 Гц ~ 20 кГц.

Установка глубины модуляции

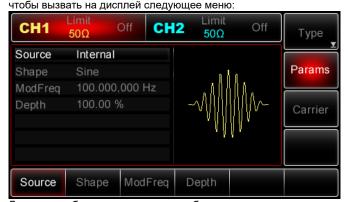
Глубина модуляции выражается в процентах и представляет собой величину колебания амплитуды. Глубина амплитудной модуляции может быть выбрана в диапазоне от 0% до 120%, а по умолчанию равна 100%. Если глубина модуляции установлена на 0%, амплитуда выходного сигнала является постоянной величиной и равна половине установленного значения амплитуды несущего сигнала. Если глубина модуляции установлена на 100%, амплитуда несущего сигнала варьируется в соответствии с модулирующим сигналом. При глубине модуляции больше 100% размах сигнала на выходе генератора не превысит ±5 В (при оконечном сопротивлении 50 Ом). Для регулировки глубины модуляции, вначале включите интерфейс режима амплитудной модуляции, а затем с помощью многофункционального регулятора и стрелоч-

ных кнопок или нажатием функциональных кнопок Params --Depth установите требуемое значение глубины модуляции. Если выбран внешний источник модуляции, амплитуда выходного сигнала также управляется уровнем сигнала ±5 В, поданного на для внешнего сигнала аналоговой модуляции . (**Modulation In**) на задней панели генератора. Например, , если глубина модуляции в списке параметров установлена на 100 %, то когда подается внешний модулирующий сигнал +5 В, амплитуда выходного амплитудно-модулированного сигнала примет максимальное значение. Если же уровень модулирующего сигнала составляет -5 В, выходной сигнал будет иметь минимальную амплитуду.

Применения

Прежде всего, необходимо включить режим амплитудной модуляции генератора. Для того, чтобы установить синусоидальный сигнал с частотой 200 Гц от внутреннего источника в качестве модулирующего, прямоугольный сигнал с амплитудой 200 мВ (mVpp), коэффициентом заполнения 45% и частотой 10 кГц в качестве несущего и глубину модуляции равной 80%, выполните следующие действия:

1) Включение функции амплитудной модуляции


Нажмите кнопки **Menu** ightarrow Mod ightarrow Туре ightarrow АМ (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз), что-

бы включить функцию амплитудной модуляции.

2) Настройка параметров модулирующего сигнала

При включенной функции амплитудной модуляции используйте многофункциональный регулятор и стрелочные кнопки, чтобы выполнить настройку. Вы также можете нажать функциональную кнопку Params в интерфейсе функции амплитудной модуляции,

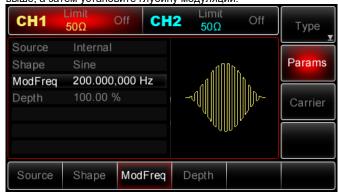


Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите соответствующую единицу измерения.

3) Настройка параметров несущего сигнала

Нажмите Carrier → Type → Square чтобы выбрать прямоугольный сигнал в качестве несущего (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз).

Используйте многофункциональный регулятор и стрелочные кнопки, чтобы выполнить настройку. Вы также можете нажать функциональную кнопку Params в интерфейсе функции амплитудной модуляции, чтобы вызвать на дисплей следующее меню:



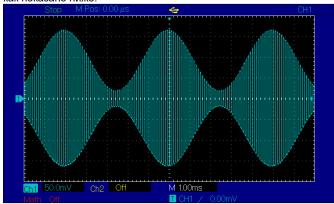
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требу-

4) Настройка глубины модуляции

По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень меню выше, а затем установите глубину модуляции.

Используйте многофункциональный регулятор и стрелочные кнопки, чтобы выполнить настройку. Вы также можете нажать функциональную кнопку Params → Depth, затем ввести число 80

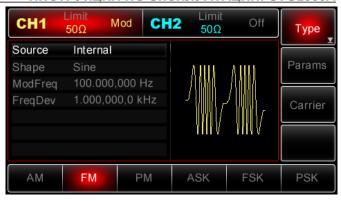
с помощью клавиатуры цифрового ввода и нажать кнопку 3%, чтобы завершить установку:



5) Включение генерации сигнала в канале

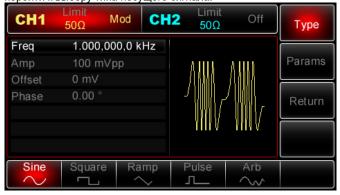
Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки **Utility** → **CH1** Setting. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Mod", показывая, что выход канала CH1 включен.

После этого вы можете наблюдать выдаваемый генератором амплитудно-модулированный сигнал с помощью осциллографа, как показано ниже:



Частотная модуляция (FM)

В режиме частотной модуляции модулированный сигнал складывается из несущего и модулирующего сигналов. Частота несущего сигнала варьируется модулирующим сигналом. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.

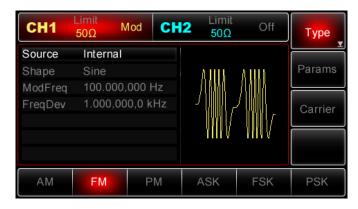

Выбор частотной модуляции (FM)

Нажмите кнопки Menu o Mod o Type o FM, чтобы включить функцию частотной модуляции (FM) (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). При включенном режиме частотной модуляции прибор будет генерировать модулированный сигнал в соответствии с текущими настройками модулирующего и несущего сигналов.

Выбор несущего сигнала

Форма несущего сигнала в режиме частотной модуляции может быть выбрана из следующих функций: синусоидальный, прямоугольный, пилообразный или произвольный сигнал (за исключением постоянного уровня напряжения). По умолчанию в качестве несущего устанавливается синусоидальный сигнал. Когда включен режим частотной модуляции, нажмите кнопку Carrier, чтобы перейти к выбору типа несущего сигнала.

Настройка частоты несущего сигнала


Диапазоны частот несущей могут быть различным и зависят от типа выбранной формы сигнала. По умолчанию для всех функций устанавливается частота 1 кГц. Более подробная информация содержится в следующей таблице:

	Частота			
	UTG2062A		UTG2025A	
Функции	минималь-	максималь-	мини-	макси-
	ное значе-	ное значе-	мальное	мальное
	ние	ние	значение	значение
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц

Для установки несущей частоты вначале выберите форму несущего сигнала, а затем настройте параметры с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения настройки.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме частотной модуляции по умолчанию устанавливается внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима частотной модуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params → Source → Ext.

1) Внутренний источник

При выборе внутреннего источника модулирующий сигнал может быть следующих типов: синусоидальный, прямоугольный, нарастающий пилообразный, убывающий пилообразный, произвольный, шумовой. По умолчанию при включении режима частотной модуляции в качестве модулирующего устанавливается синусоидальный сигнал. Чтобы выбрать другой тип модулирующего сигнала, вначале включите интерфейс частотной модуляции, а затем поверните многофункциональный регулятор или нажмите функциональные кнопки Params → Shape:

- Прямоугольный сигнал (Square) с коэффициентом заполнения 50%
- Нарастающий пилообразный сигнал (UpRamp) с симметрией 100%
- Убывающий пилообразный сигнал (DownRamp) с симметрией 0%
- Сигнал произвольной формы (Arbitrary): когда в качестве модулирующего выбран сигнал произвольной формы, производится автоматическая выборка сигнала с ограничением до 1 kpts
- Шумовой сигнал (Noise): белый гауссов шум

2) Внешний источник

При выборе внешнего источника модуляции форма и частота модулирующего сигнала скрыты из списка параметров, и несущая модулируется внешним сигналом. Девиация частоты при частотной модуляции управляется уровнем сигнала ±5 В, поданного на разъем для внешнего сигнала аналоговой модуляции (Modulation In) на задней панели генератора. Когда значение модулирующего сигнала положительное, прибор генерирует частоту выше, чем основная частота несущего сигнала, и наоборот, если значение модулирующего сигнала отрицательное, частота генерируемого сигнала уменьшается. Уменьшение абсолютной величины внешнего сигнала приводит к уменьшению девиации частоты генерируемого сигнала. Например, если величина девиации частоты в списке параметров установлена на 1 кГц, то когда подается внешний модулирующий сигнал +5 В, частота выходного частотно-модулированного сигнала превысит несущую частоту на 1 кГц. Если же уровень модулирующего сигнала составляет -5 В, то частота выходного сигнала будет на 1 кГц ниже несущей ча-

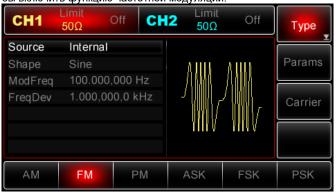
Установка частоты модулирующего сигнала

Установка частоты модулирующего сигнала доступна при выборе внутреннего источника модуляции. При включении режима частотной модуляции частота модулирующего сигнала по умолчанию устанавливается равной 100 Гц. Для изменения частоты включите интерфейс режима частотной модуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Params \rightarrow ModFreq выберите значение частоты в диапазоне 2 мГц \sim 50 кГц. Если выбран внешний источник сигнала, опции частоты и формы сигнала не отображаются в списке параметров. В этом случае несущая модулируется внешним сигналом с частотой в диапазоне 0 Гц \sim 20 кГц.

Установка девиации частоты

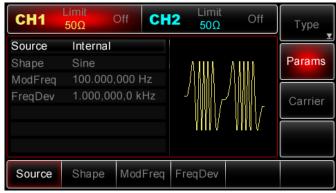
Девиация частоты представляет собой амплитуду варьирования частоты модулированного сигнала относительно несущей частоты. Девиация частоты в режиме частотной модуляции может быть выбрана в диапазоне от 1 мкГц до половины максимального значения частоты несущего сигнала. По умолчанию она равна кГц. Для изменения девиации частоты вначале включите интерфейс режима частотной модуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажати-

ем функциональных кнолок Params ightarrow FreqDev установите требуемое значение девиации частоты.

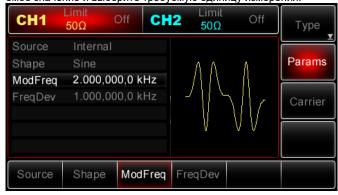

- Девиация частоты всегда меньше или равна несущей частоте.
 При попытке установить значение девиации частоты, превышающее значение несущей частоты, девиация будет автоматически ограничена текущим значением несущей частоты.
- Сумма несущей частоты и девиации частоты всегда меньше или равна максимальной частоте несущего сигнала. При попытке установить недопустимое значение девиации частоты генератор автоматически ограничит ее максимальным допустимым значением частоты выбранного несущего сигнала.

Применения

Прежде всего, необходимо включить режим частотной модуляции генератора. Для того, чтобы установить прямоугольный сигнал с частотой 2 кГц от внутреннего источника в качестве модулирующего, синусоидальный сигнал с амплитудой 100 мВ (mVpp) и частотой 10 кГц в качестве несущего и девиацию частоты равной 5 кГц выполните следующие действия:


1) Включение функции частотной модуляции

Нажмите кнопки **Menu** \to Mod \to Type \to FM (если опция Type не выделена, нажмите функциональную кнопку Type еще раз), чтобы включить функцию частотной модуляции.



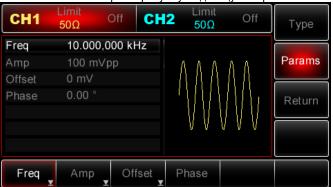
2) Настройка параметров модулирующего сигнала

При включенной функции частотной модуляции для настройки параметров модулирующего сигнала используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции частотной модуляции, чтобы вызвать на дисплей следующее меню:

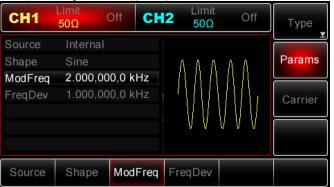
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.

3) Настройка параметров несущего сигнала

Нажмите Carrier → Type → Sine, чтобы выбрать синусоидальный сигнал в качестве несущего (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). Синусоидальный сигнал устанавливается по умолчанию, поэтому изменять эту


настройку в данном примере не требуется:

Для настройки используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции частотной модуляции, чтобы вызвать на дисплей следующее меню:

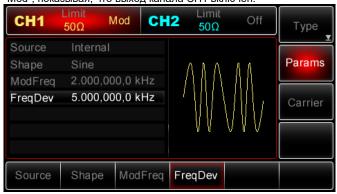


Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.

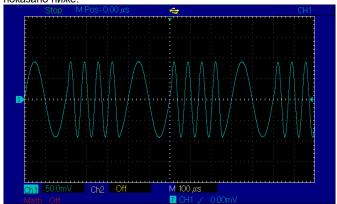
4) Настройка девиации частоты

По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень меню выше, а затем установите девиацию частоты.

Используйте многофункциональный регулятор и стрелочные кнопки, чтобы выполнить настройку. Вы также можете нажать функциональную кнопку Params → FreqDev, затем ввести число 5 с помощью клавиатуры цифрового ввода и нажать кнопку kHz, чтобы завершить установку:


CH1 Limit 50Ω Off CH2 Limit 50Ω Off

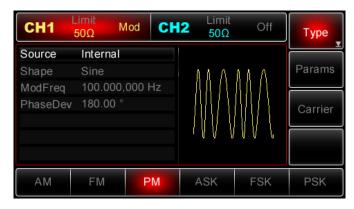
Source Internal Shape Sine ModFreq 2.000,000,0 kHz


FreqDev 5 Carrier

5) Включение генерации сигнала в канале

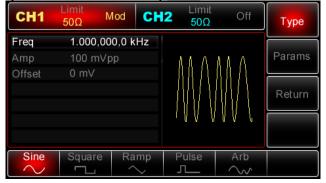
Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки **Utility** → **CH1** Setting. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Mod", показывая, что выход канала CH1 включен.

После этого вы можете наблюдать выдаваемый генератором частотно-модулированный сигнал с помощью осциллографа, как показано ниже:



Фазовая модуляция (РМ)

В режиме фазовой модуляции модулированный сигнал складывается из несущего и модулирующего сигналов. Фаза несущего сигнала варьируется модулирующим сигналом. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо другот друга с одинаковыми или разными типами модуляции.

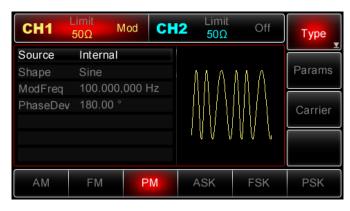

Выбор фазовой модуляции (РМ)

Нажмите кнопки Menu o Mod o Type o PM, чтобы включить функцию фазовой модуляции (FM) (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). При включенном режиме фазовой модуляции прибор будет генерировать модулированный сигнал в соответствии с текущими настройками модулирующего и несущего сигналов.

Выбор несущего сигнала

Форма несущего сигнала в режиме фазовой модуляции может быть выбрана из следующих функций: синусоидальный, прямоугольный, пилообразный или произвольный сигнал (за исключением постоянного уровня напряжения). По умолчанию в качестве несущего устанавливается синусоидальный сигнал. Когда включен режим фазовой модуляции, для перехода к выбору типа несущего сигнала нажмите кнопку Carrier.

Настройка частоты несущего сигнала


Диапазоны частот несущей могут быть различным и зависят от типа выбранной формы сигнала. По умолчанию для всех функций устанавливается частота 1 кГц. Более подробная информация содержится в следующей таблице:

	Частота				
	UTG2062A		UTG2025A		
Функции	минималь-	максималь-	мини-	макси-	
	ное значе-	ное значе-	мальное	мальное	
	ние	ние	значение	значение	
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц	
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц	
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц	
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц	
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц	

Для установки значения несущей частоты вначале выберите форму несущего сигнала, а затем настройте параметры с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения настройки.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме фазовой модуляции по умолчанию устанавливается внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима фазовой модуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params → Source → Ext.

1) Внутренний источник

При выборе внутреннего источника модулирующий сигнал может быть следующих типов: синусоидальный, прямоугольный, нарастающий пилообразный, убывающий пилообразный, произвольный, шумовой. По умолчанию при включении режима фазовой модуляции в качестве модулирующего устанавливается синусоидальный сигнал. Чтобы выбрать другой тип модулирующего сигнала, вначале включите интерфейс фазовой модуляции, а затем поверните многофункциональный регулятор или нажмите функциональные кнопки Params → Shape:

- Прямоугольный сигнал (Square) с коэффициентом заполнения 50%
- Нарастающий пилообразный сигнал (UpRamp) с симметрией 100%
- Убывающий пилообразный сигнал (DownRamp) с симметрией
- Сигнал произвольной формы (Arbitrary): когда в качестве модулирующего выбран сигнал произвольной формы, производится автоматическая выборка сигнала с ограничением до 1 kpts
- Шумовой сигнал (Noise): белый гауссов шум

2) Внешний источник

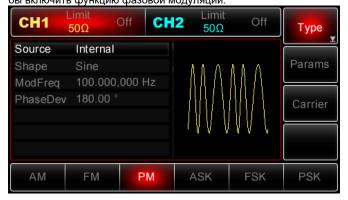
При выборе внешнего источника модуляции форма и частота модулирующего сигнала скрыты из списка параметров, и несущая модулируется внешним сигналом. Девиация фазы при фазовой модуляции управляется уровнем сигнала ±5 В, поданного на разъем для внешнего сигнала аналоговой модуляции (Modulation In) на задней панели генератора. Например, если величина девиации фазы в списке параметров установлена на 180°, то когда подается внешний модулирующий сигнал +5 В, девиация фазы выходного фазово-модулированного сигнала составит 180°. Для меньших значений внешнего модулирующего сигнала девиация фазы также будет меньше.

Установка частоты модулирующего сигнала

Установка частоты модулирующего сигнала доступна при выборе внутреннего источника модуляции. При включении режима частотной модуляции частота модулирующего сигнала по умолчанию устанавливается равной 100 Гц. Для изменения частоты включите интерфейс режима частотной модуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Params -> ModFreq выберите значение частоты в диапазоне 2 мГц ~ 50 кГц. Если выбран внешний источник сигнала, опции частоты и формы сигнала не отображаются в списке параметров. В этом случае несущий сигнал модулируется внешним сигналом с частотой в диапазоне 0 Гц ~ 20 кГц.

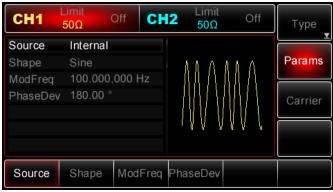
Установка девиации фазы

Девиация фазы представляет собой амплитуду варьирования фазы фазово-модулированного сигнала относительно несущей фазы. Девиация частоты в режиме частотной модуляции может быть выбрана в диапазоне 0°-360°. По умолчанию она равна 180°. Для изменения девиации фазы вначале включите интерфейс режима фазовой модуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Params → PhaseDev установите требуемое значение девиации фазы.

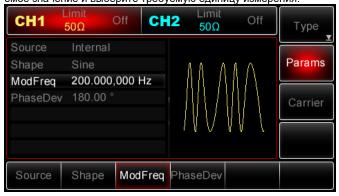

Применения

Прежде всего, необходимо включить режим фазовой модуляции генератора. Для того, чтобы установить синусоидальный сигнал с частотой 200 Гц от внутреннего источника в качестве модулирующего, синусоидальный сигнал с амплитудой 100 мВ (mVpp) и

частотой 900 Гц в качестве несущего и девиацию частоты равной 200°, выполните следующие действия:

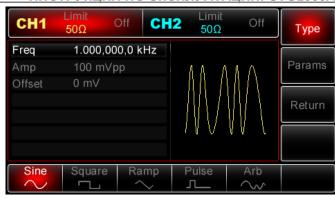

1) Включение функции фазовой модуляции

Нажмите кнопки **Menu** \to Mod \to Type \to PM (если опция Туpe не выделена, нажмите функциональную кнопку Туpe еще раз), чтобы включить функцию фазовой модуляции.

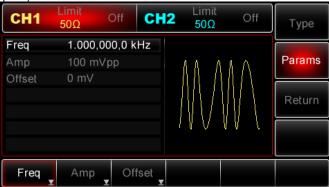


2) Настройка параметров модулирующего сигнала

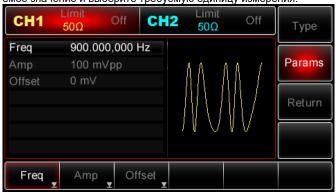
При включенной функции фазовой модуляции для настройки параметров модулирующего сигнала используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции фазовой модуляции, чтобы вызвать на дисплей следующее меню:



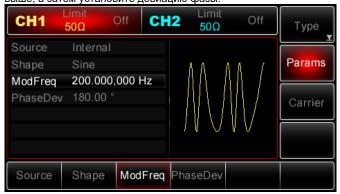
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.



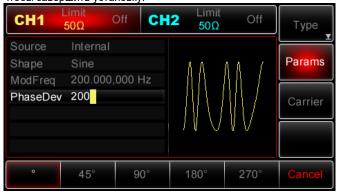
3) Настройка параметров несущего сигнала


Нажмите Carrier → Type → Sine, чтобы выбрать синусоидальный сигнал в качестве несущего (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). Синусоидальный сигнал устанавливается по умолчанию, поэтому изменять эту настройку в данном примере не требуется:

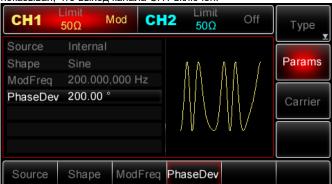
Для настройки используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции фазовой модуляции, чтобы вызвать на дисплей следующее меню (в отличие от списка параметров режима частотной модуляции, в режиме фазовой модуляции в списке параметров отсутствует опция Phase (значение фазы):



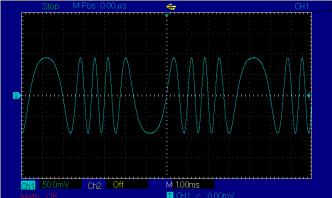
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.


4) Настройка девиации фазы

По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень меню выше, а затем установите девиацию фазы.


Используйте многофункциональный регулятор и стрелочные кнопки, чтобы выполнить настройку. Вы также можете нажать функциональную кнопку Params → PhaseDev, затем ввести число

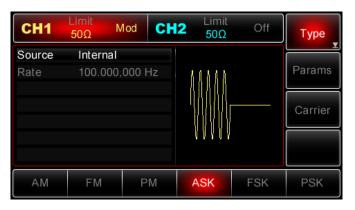
200 с помощью клавиатуры цифрового ввода и нажать кнопку « », чтобы завершить установку:



5) Включение генерации сигнала в канале

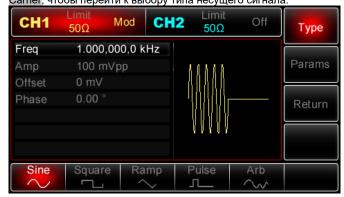
Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки Utility → CH1 Setting. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Mod", показывая, что выход канала CH1 включен.

После этого вы можете наблюдать выдаваемый генератором фазово-модулированный сигнал с помощью осциллографа, как показано ниже:



Амплитудная манипуляция (ASK)

В режиме амплитудной модуляции (ASK – amplitude-shift keying) варьирование амплитуды несущего сигнала отражает состояния цифрового сигнала "0" и "1". Высокий и низкий логические уровни модулирующего сигнала управляют генерацией несущего сигнала с различной амплитудой. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.


Выбор амплитудной манипуляции

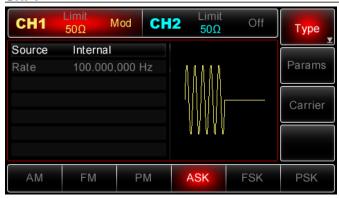
Нажмите кнопки **Menu** → Mod → Type → ASK, чтобы включить функцию амплитудной манипуляции (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). При включенном режиме амплитудной манипуляции прибор будет генерировать модулированный сигнал в соответствии с текущими настройками амплитудной манипуляции и несущего сигнала.

Выбор несущего сигнала

Форма несущего сигнала в режиме амплитудной манипуляции может быть выбрана из следующих функций: синусоидальный, прямоугольный, пилообразный или произвольный сигнал (за исключением постоянного уровня напряжения). По умолчанию в качестве несущего устанавливается синусоидальный сигнал. Когда включен режим амплитудной манипуляции, нажмите кнопку Carrier, чтобы перейти к выбору типа несущего сигнала.

Настройка частоты несущего сигнала

Диапазоны частот несущей могут быть различным и зависят от типа выбранной функции. По умолчанию для всех функций устанавливается частота 1 к Γ ц. Более подробная информация со-


держится в следующей таблице:

	Частота			
	UTG2062A		UTG2025A	
Функции	минималь-	максималь-	мини-	макси-
	ное значе-	ное значе-	мальное	мальное
	ние	ние	значение	значение
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц

Для установки несущей частоты вначале выберите форму несущего сигнала, а затем настройте параметры с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения ввода.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме амплитудной манипуляции по умолчанию установлен внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима амплитудной манипуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params → Source → Ext.

1) Внутренний источник

При выборе внутреннего источника в качестве модулирующего сигнала используется прямоугольный сигнал с коэффициентом заполнения 50%. Вы можете изменить скорость амплитудной манипуляции (Rate), чтобы определить скорость, на которой происходит изменение модулированного сигнала.

2) Внешний источник

При выборе внешнего источника модуляции опция Rate не отображается в списке параметров модулирующего сигнала, и несущая модулируется внешним сигналом. Амплитуда генерируемого амплитудно-манипулированного сигнала управляется логическими уровнями сигнала, поданного на разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели генератора. Например, если на этот разъем подается низкий логический уровень, амплитуда генерируемого сигнала равна базовой амплитуде несущего сигнала. Если же на него подается высокий логический уровень, то амплитуда выходного сигнала будет меньше амплитуде несущего сигнала.

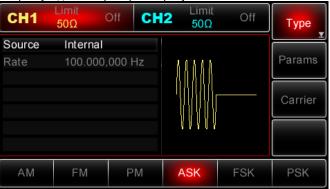
Установка скорости амплитудной манипуляции

Установка скорости амплитудной манипуляции доступна при выборе внутреннего источника модуляции. При включении режима амплитудной манипуляции ее скорость по умолчанию устанавливается равной 100 Гц и может изменяться в пределах 2 мГц ~ 100 кГц. Для изменения скорости включите интерфейс режима амплитудной манипуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Рагаms — Rate выберите значение частоты в диапазоне.

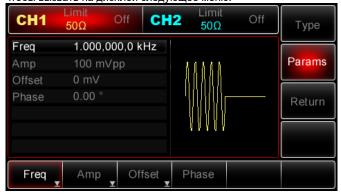
Применения

Прежде всего, необходимо включить режим амплитудной манипуляции генератора. Для того, чтобы установить логический сигнал с частотой 300 Гц от внутреннего источника в качестве модулирующего и синусоидальный сигнал с амплитудой 2 В (Vpp) и частотой 15 кГц в качестве несущего, выполните следующие действия:

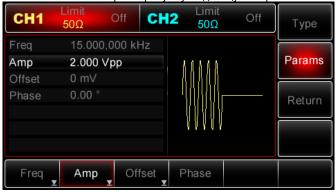
Примечание: логический сигнал определяется внутренней частотой генератора, и вы можете лишь установить значение его частоты для изменения скорости амплитудной манипуляции. В действительности эта частота показывается скорость, с которой сдвигается выходной сигнал.


1) Включение функции амплитудной манипуляции

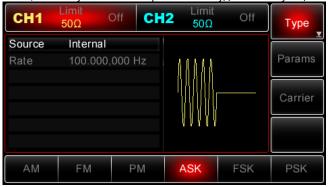
Нажмите кнопки **Menu** \rightarrow Mod \rightarrow Type \rightarrow ASK (если опция Type не выделена, нажмите функциональную кнопку Type еще раз), чтобы включить функцию амплитудной манипуляции.



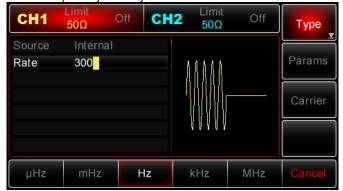
3) Настройка параметров несущего сигнала


Нажмите Carrier → Type → Sine чтобы выбрать прямоугольный сигнал в качестве несущего (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). Синусоидальный сигнал устанавливается по умолчанию, поэтому изменять эту настройку в данном примере не требуется:

Для настройки используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции амплитудной модуляции, чтобы вызвать на дисплей следующее меню:



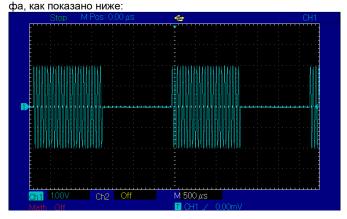
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.



3) Настройка скорости амплитудной манипуляции

По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень меню выше, а затем установите скорость амплитудной манипуляции.

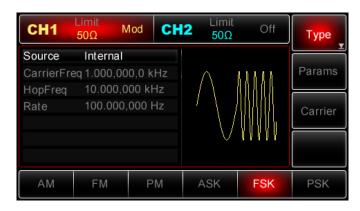
Для установки этого параметра используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params → Rate, затем ввести число 300 с помощью клавиатуры цифрового ввода и нажать кнопку Hz, чтобы завершить установку:



4) Включение генерации сигнала в канале

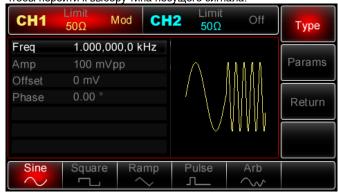
Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки **Utility** → **CH1Setting**. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Mod", показывая, что выход канала CH1 включен.

После этого вы можете наблюдать выдаваемый генератором амплитудно-манипулированный сигнал с помощью осциллогра-



Частотная манипуляция (FSK)

В режиме частотной манипуляции (FSK – frequency-shift keying) выходной сигнал генератора переключается между двумя заранее заданными частотами (несущей частотой и скачком по частоте) Высокий и низкий логические уровни модулирующего сигнала управляет генерацией несущего сигнала, задавая для него ту или иную из двух указанных частот. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.


Выбор частотной манипуляции

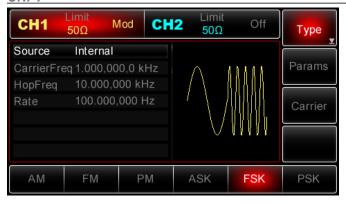
Нажмите кнопки Menu o Mod o Type o FSK, чтобы включить функцию частотной манипуляции (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). При включенном режиме частотной манипуляции прибор будет генерировать модулированный сигнал в соответствии с текущими настройками.

Выбор несущего сигнала

Форма несущего сигнала в режиме частотной манипуляции может быть выбрана из следующих функций: синусоидальный, прямоугольный, пилообразный или произвольный сигнал (за исключением постоянного уровня напряжения). По умолчанию в кочестве несущего устанавливается синусоидальный сигнал. Когда включен режим частотной манипуляции, нажмите кнопку Carrier, чтобы перейти к выбору типа несущего сигнала.

Настройка частоты несущего сигнала

Диапазоны частот несущей могут быть различным и зависят от типа выбранной функции. По умолчанию для всех функций устанавливается частота 1 кГц. Более подробная информация со-


держится в следующей таблице:

	Частота			
	UTG2	TG2062A UTG2025		2025A
Функции	минималь-	максималь-	мини-	макси-
	ное значе-	ное значе-	мальное	мальное
	ние	ние	значение	значение
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц

Для установки значения несущей частоты вначале выберите форму несущего сигнала, а затем настройте параметры с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params — Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения ввода. Если текущий тип несущего сигнала вам подходит, то потребуется только задать требуемое значение несущей частоты.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме частотной манипуляции по умолчанию установлен внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима частотной манипуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params → Source → Ext.

1) Внутренний источник

При выборе внутреннего источника в качестве модулирующего сигнала используется прямоугольный сигнал (встроенный и неизменяемый) с коэффициентом заполнения 50%. Вы можете изменить скорость частотной манипуляции (Rate), чтобы определить скорость, на которой происходит переключение между несущей частотой и скачком частоты в модулированном сигнале.

2) Внешний источник

При выборе внешнего источника модуляции опция Rate не отображается в списке параметров модулирующего сигнала, и несущая модулируется внешним сигналом. Частота генерируемого частотно-манипулированного сигнала управляется логическими уровнями сигнала, поданного на разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели генератора. Например, если на этот разъем подается низкий логический уровень, частота генерируемого сигнала равна несущей частоте. Если же на него подается высокий логический уровень, то сигнал будет генерироваться на частоте скачка.

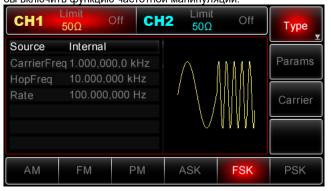
Настройка частоты скачка

При включении функции частотной манипуляции, частота скачка по умолчанию устанавливается равной 10 кГц. Чтобы изменить значение частоты скачка, включите интерфейс режима частотной манипуляции и установите требуемое значение с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq. Диапазоны частоты скачка могут быть различным и зависят от типа выбранной функции. Более подробная информация содержится в следующей таблице:

	Частота			
	UTG2	062A	UTG	2025A
Функции	минималь-	максималь-	мини-	макси-
	ное значе-	ное значе-	мальное	мальное
	ние	ние	значение	значение
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц

Установка скорости частотной манипуляции

Установка скорости частотной манипуляции доступна при выборе внутреннего источника модуляции. При включении режима частотной манипуляции ее скорость по умолчанию устанавливается равной 100 Гц и может изменяться в пределах 2 мГц ~ 100 кГц. Для изменения скорости включите интерфейс режима частотной манипуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Рагаms → Rate выберите значение скорости в доступном диапазоне.

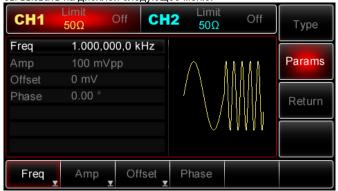

Примечание: Для перехода в режим частотной манипуляции включите функцию частотной манипуляции, нажав кнопки Нажмите кнопки Menu → Mod → Type → FSK (если опция Type не выделена, нажмите функциональную кнопку Type еще раз).

Применения

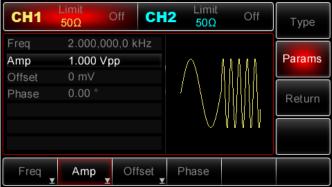
Прежде всего необходимо включить режим частотной манипуляции генератора. Для того, чтобы установить синусоидальный сигнал с амплитудой 1 В (Vpp) и частотой 2 кГц в качестве несущего, установить частоту скачка равной 800 Гц и скорость частотной манипуляции равной 200 Гц, выполните следующие действия:

1) Включение функции частотной манипуляции Нажмите кнопки **Menu** o Mod o Type o FSK (если опция Type не

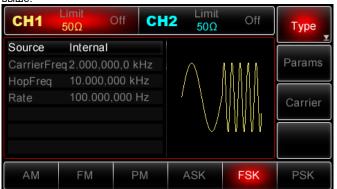
выделена, нажмите функциональную кнопку Туре еще раз), чтобы включить функцию частотной манипуляции.



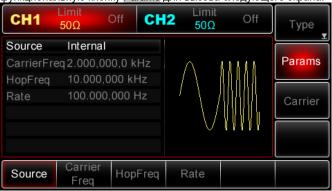
2) Настройка параметров несущего сигнала


Нажмите Carrier → Type → Sine чтобы выбрать прямоугольный сигнал в качестве несущего (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). Синусоидальный сигнал устанавливается по умолчанию, поэтому изменять эту настройку в данном примере не требуется:

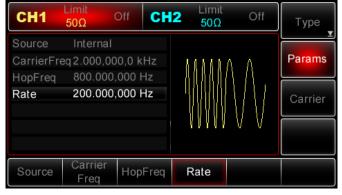
Для настройки используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции частотной модуляции, чтобы вызвать на дисплей следующее меню:



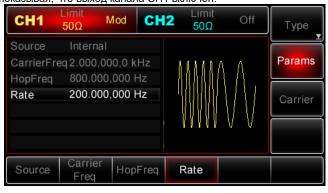
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.



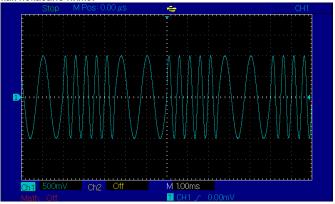
 Настройка частоты скачка и скорости частотной манипуляции


По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень меню

Для установки этих параметров используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params для вызова следующего экрана:



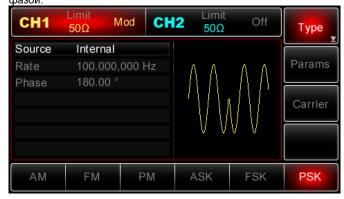
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.


4) Включение генерации сигнала в канале

Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки **Utility** → **CH1Setting**. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Mod", показывая, что выход канала CH1 включен.

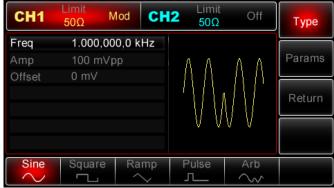
После этого вы можете наблюдать выдаваемый генератором частотно-манипулированный сигнал с помощью осциллографа,

как показано ниже:



Фазовая манипуляция (PSK)

В режиме частотной манипуляции (PSK – phase-shift keying) выходной сигнал генератора переключается между двумя заранее заданными частотами (несущей фазой и модулирующей фазой) Высокий и низкий логические уровни модулирующего сигнала управляют генерацией несущего сигнала, задавая для него несущую или модулирующую фазу. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.

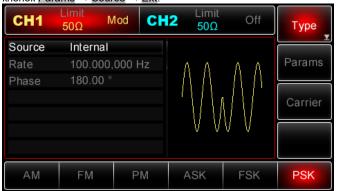

Выбор фазовой манипуляции

Нажмите кнопки **Menu** → Mod → Type → PSK, чтобы включить функцию фазовой манипуляции (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). При включенном режиме фазовой манипуляции прибор будет генерировать модулированный сигнал в соответствии с фазой текущего несущего сигнала (по умолчанию 0° и нерегулируемая) и модулирующей фазой.

Выбор несущего сигнала

Форма несущего сигнала в режиме частотной манипуляции может быть выбрана из следующих функций: синусоидальный, прямоугольный, пилообразный или произвольный сигнал (за исключением постоянного уровня напряжения). По умолчанию в качестве несущего устанавливается синусоидальный сигнал. Когда включен режим фазовой манипуляции, нажмите кнопку Carrier, чтобы перейти к выбору типа несущего сигнала.

Настройка частоты несущего сигнала


Диапазоны частот несущей могут быть различным и зависят от типа выбранной функции. По умолчанию для всех функций устанавливается частота 1 кГц. Более подробная информация содержится в следующей таблице:

	Частота			
	UTG2	062A	UTG2025A	
Функции	минималь-	максималь-	мини-	макси-
	ное значе-	ное значе-	мальное	мальное
	ние	ние	значение	значение
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц

Для установки значения несущей частоты вначале выберите форму несущего сигнала, а затем настройте параметры с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения ввода. Если текущий тип несущего сигнала вам подходит, то потребуется только задать требуемое значение несущей частоты.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме фазовой манипуляции по умолчанию устанавливается внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима фазовой манипуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params → Source → Ext

1) Внутренний источник

При выборе внутреннего источника в качестве модулирующего сигнала используется прямоугольный сигнал (встроенный и неизменяемый) с коэффициентом заполнения 50%. Вы можете изменить скорость фазовой манипуляции (Rate), чтобы определить скорость, на которой происходит переключение между несущей и модулирующей фазами в модулированном сигнале.

2) Внешний источник

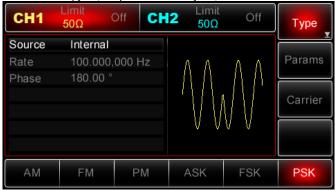
При выборе внешнего источника модуляции опция Rate не отображается в списке параметров модулирующего сигнала, и несущая модулируется внешним сигналом. Частота генерируемого фазово-манипулированного сигнала управляется логическими уровнями сигнала, поданного на разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели генератора. Например, если на этот разъем подается низкий логический уровень, фаза генерируемого сигнала равна несущей фазе. Если же на него подается высокий логический уровень, то выходной сигнал будет иметь модулирующую фазу.

Установка скорости фазовой манипуляции

Установка скорости фазовой манипуляции доступна при выборе внутреннего источника модуляции. При включении режима фазовой манипуляции ее скорость по умолчанию устанавливается равной 100 Гц и может изменяться в пределах 2 мГц ~ 100 кГц. Для изменения скорости включите интерфейс режима фазовой манипуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Params → Rate выберите значение скорости в доступном диапазоне.

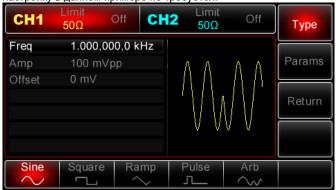
Установка модулирующей фазы

Модулирующая фаза представляет собой вариацию фазы сигнала, сдвинутого относительно сигнала несущей.

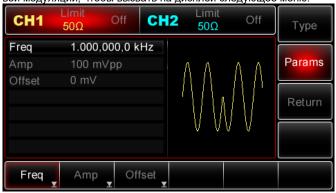

Она может лежать в диапазоне 0°-360° и по умолчанию равна 180°. Для изменения параметров включите интерфейс режима фазовой манипуляции, а затем и установите требуемое значениие с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопок Params → Rate, чтобы завершить установку.

Применения

Прежде всего необходимо включить режим фазовой манипуляции генератора. Для того, чтобы установить синусоидальный сигнал с амплитудой 2 В (Vpp) и частотой 2 кГц в качестве несущего и скорость частотной манипуляции равной 1 кГц, выполните следующие действия:


1) Включение функции фазовой манипуляции

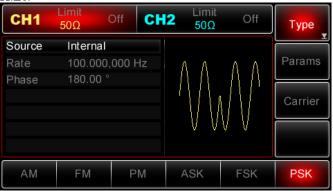
Нажмите кнопки **Menu** ightarrow Mod ightarrow Type ightarrow PSK (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз), чтобы включить функцию фазовой манипуляции.



2) Настройка параметров несущего сигнала

Нажмите Carrier → Type → Sine чтобы выбрать прямоугольный сигнал в качестве несущего (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). Синусоидальный сигнал устанавливается по умолчанию, поэтому изменять эту настройку в данном примере не требуется:

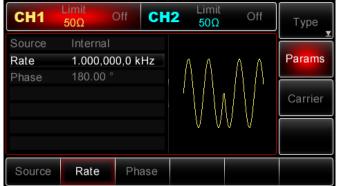
Для настройки используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в приведенном выше интерфейсе функции фазовой модуляции, чтобы вызвать на дисплей следующее меню:



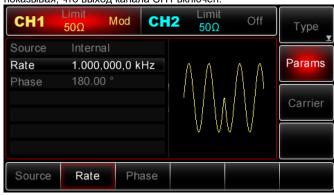
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.


CH₁ CH₂ Off 50Ω Type 2.000,000,0 kHz 2.000 Vpp **Params** Amp 0 mV Return Freq Amp

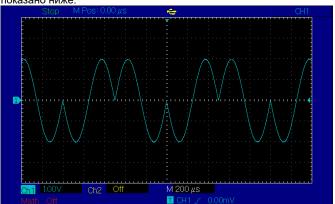
3) Настройка скорости фазовой манипуляции и модулирующей фазы


По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень меню выше

Для установки этих параметров используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params для вызова следующего экрана:



Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.


4) Включение генерации сигнала в канале

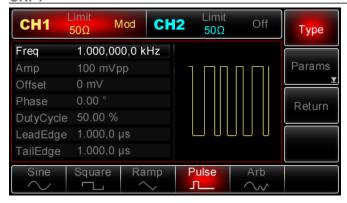
Нажмите кнопку СН1 на передней панели для включения выхода канала СН1 напрямую или включите выход канала, нажав кнопки Utility → CH1Setting. При включенном выходе канала CH1, кнопка CH1 горит, и серый значок "Off" в правой части области дисплея «Настройки канала СН1» заменяется на желтый значок "Mod", показывая, что выход канала СН1 включен.

После этого вы можете наблюдать выдаваемый генератором фазово-манипулированный сигнал с помощью осциллографа, как

показано ниже

Широтно-импульсная модуляция (PWM)

В режиме широтно-импульсной модуляции (Pulse width modulation PWM) модулированный сигнал складывается из несущего и модулирующего сигналов. Ширина импульса несущего сигнала варьируется путем изменения амплитуды модулирующего сигнала. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.


Выбор широтно-импульсной модуляции

Нажмите кнопки **Menu** ightarrow Mod ightarrow Type ightarrow PWM, чтобы включить функцию широтно-импульсной модуляции (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). При включенном режиме широтно-импульсной модуляции прибор будет генерировать модулированный сигнал в соответствии с текущими настройками модулирующего и несущего сигналов

Несущий сигнал

Формой несущего сигнала в режиме широтно-импульсной модуляции может быть только импульсный сигнал. Когда включен режим частотной модуляции, нажмите кнопку Carrier, чтобы перейти к выбору типа несущего сигнала. При этом автоматически выбирается опция Pulse (импульсный сигнал).

Настройка частоты несущего сигнала

Частота несущего импульсного сигнала может быть выбрана в диапазоне 500 мГц — 25 МГц, а по умолчанию устанавливается равной 1 кГц. Для установки несущей частоты нажмите кнопку Carrier, чтобы вызвать интерфейс настройки несущего сигнала, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Params → Freq введите требуемое значение частоты и выберите требуемую единицу измерения для завершения настройки.

Настройка коэффициента заполнения несущего сигнала Коэффициент заполнения импульсного сигнала может быть установлен в диапазоне 0,01% — 99,99% и по умолчанию устанавливается на уровне 50%. Для настройки коэффициента заполнения несущей нажмите функциональную клавишу Саггіег для вызова соответствующего интерфейса, а затем введите требуемое зачение с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Рагать — DutyCycle и затем выберите нужную единицу измерения, чтобы завершить установку.

Выбор источника модулирующего сигнала

Генератор UTG2000A позволяет выбрать внутренний или внешний источник модулирующего сигнала. При включенном режиме широтно-импульсной модуляции по умолчанию устанавливается внутренний источник модулирующего сигнала. Чтобы переключиться на внешний источник, включите интерфейс режима широтно-импульсной модуляции, а затем выберите внешний источник поворотом многофункционального регулятора или нажатием функциональных кнопок Params → Source → Ext.

Примечание: Для перехода в режим широтно-импульсной модуляции включите функцию широтно-импульсной модуляции, нажав кнопки Нажмите кнопки **Menu** → Mod → Type → PWM (если опция Type не выделена, нажмите функциональную кнопку Type дважды, чтобы перейти к следующему экрану).

CH1 Limit 50Ω Mod CH2 Limit 50Ω Off

Source Internal Shape Sine ModFreq 100.000,000 Hz DutyDev 20.00 %

Pwm

1) Внутренний источник

При выборе внутреннего источника модулирующий сигнал может быть следующих типов: синусоидальный, прямоугольный, нарастающий пилообразный, убывающий пилообразный, произвольный, шумовой. По умолчанию при включении режима широтномпульсной модуляции в качестве модулирующего устанавливается синусоидальный сигнал. Чтобы выбрать другой тип модулирующего сигнала, вначале включите интерфейс широтномпульсной модуляции, а затем поверните многофункциональный регулятор или нажмите функциональные кнопки Params →

• Прямоугольный сигнал (Square) с коэффициентом заполнения 50%

- Нарастающий пилообразный сигнал (UpRamp) с симметрией 100%
- Убывающий пилообразный сигнал (DownRamp) с симметрией 0%
- Сигнал произвольной формы (Arbitrary): когда в качестве модулирующего выбран сигнал произвольной формы, производится автоматическая выборка сигнала с ограничением до 1 kpts
- Шумовой сигнал (Noise): белый гауссов шум

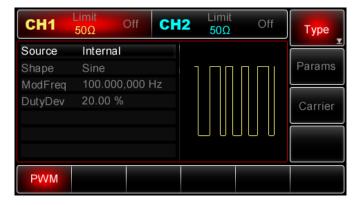
2) Внешний источник

При выборе внешнего источника модуляции форма и частота модулирующего сигнала скрыты из списка параметров, и несущая модулируется внешним сигналом. Девиация коэффициента заполнения при широтно-импульсной модуляции управляется уровнем сигнала ±5 В, поданного на разъем для внешнего сигнала аналоговой модуляции (Modulation In) на задней панели генератора. Например, если величина девиации коэффициента заполнения в списке параметров установлена равной 15%, то когда подается внешний модулирующий сигнал +5 В, коэффициент заполнения модулированного импульсного сигнала увеличится на 15%. При уменьшении уровня модулирующего сигнала девиация коэффициента заполнения также будет уменьшаться.

Установка частоты модулирующего сигнала

Установка частоты модулирующего сигнала доступна при выборе внутреннего источника модуляции. При включении режима широтно-импульсной модуляции частота модулирующего сигнала по умолчанию устанавливается равной 100 Гц. Для изменения частоты включите интерфейс режима широтно-импульсной модуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Рагамы — ModFreq выберите значение частоты в диапазоне 2 мГц ~ 50 кГц. Если выбран внешний источник сигнала, опции частоты и формы сигнала не отображаются в списке параметров. В этом случае несущий сигнал модулируется внешним сигналом с частотой в диапазоне 0 Гц ~ 20 кГц.

Установка девиации коэффициента заполнения

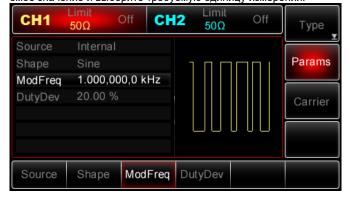

Девиация коэффициента заполнения представляет собой величину варьирования коэффициента заполнения модулированного сигнала относительно коэффициента заполнения несущего сигнала. Девиация коэффициента заполнения в режиме широтномпульсной модуляции может быть выбрана в диапазоне от 0% до 49,99%, а по умолчанию равна 20%. Для изменения девиации коэффициента заполнения вначале включите интерфейс режима широтно-импульсной модуляции, а затем с помощью многофункционального регулятора и стрелочных кнопок или нажатием функциональных кнопок Params \rightarrow FreqDev установите требуемое значение девиации коэффициента заполнения.

- Девиация коэффициента заполнения представляет собой величину варьирования коэффициента заполнения модулированного сигнала относительно коэффициента заполнения исходного импульсного сигнала, выраженную в процентах.
- Девиация коэффициента заполнения не может превышать коэффициент заполнения текущего импульсного сигнала.
- Сумма девиации коэффициента заполнения и коэффициента заполнения текущего сигнала не может превышать99,99%
- Девиация коэффициента заполнения ограничена минимальным значением коэффициента заполнения импульсного сигнала и выбранной длительностью фронта.

Применения

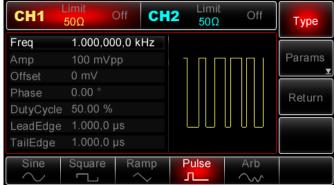
Прежде всего, необходимо включить режим широтно-импульсной модуляции генератора. Для того, чтобы установить синусоидальный сигнал с частотой 1 кГц от внутреннего источника в качестве модулирующего, импульсный сигнал с амплитудой 2 В (Vpp), частотой 10 кГц, коэффициентом заполнения 50% и временем нарастания/убывания фронтов 100 нс в качестве несущего и девиацию коэффициента заполнения 50%, выполните следующие действия:

1) Включение функции широтно-импульсной модуляции Нажмите кнопки **Menu** → Mod → Type → PWM (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз), чтобы включить функцию широтно-импульсной модуляции.



2) Настройка параметров модулирующего сигнала

При включенной функции широтно-импульсной модуляции для настройки параметров модулирующего сигнала используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params в интерфейсе функции широтно-импульсной модуляции, чтобы вызвать на дисплей следующее меню:



Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.

3) Настройка параметров несущего сигнала

При включенном интерфейсе функции широтно-импульсной модуляции нажмите функциональную кнопку Carrier чтобы перейти к интерфейсу установки параметров несущего сигнала:

Для настройки используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную

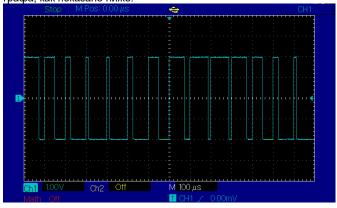
кнопку Params в интерфейсе функции широтно-импульсной модуляции, чтобы вызвать на дисплей следующий интерфейс:

Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.

4) Установка девиации коэффициента заполнения

По окончанию настройки несущего сигнала нажмите функциональную кнопку Return, чтобы вернуться на один уровень менювыше, а затем установите девиацию коэффициента заполнения.

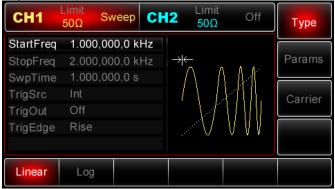
Используйте многофункциональный регулятор и стрелочные кнопки, чтобы выполнить настройку. Вы также можете нажать функциональную кнопку $Params \rightarrow DutyDev$, затем ввести число 40 с помощью клавиатуры цифрового ввода и нажать кнопку %, чтобы завершить установку:


5) Включение генерации сигнала в канале

Нажмите кнопку **СН1** на передней панели для включения выхода канала СН1 напрямую или включите выход канала, нажав кнопки

Utility \rightarrow CH1Setting. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Mod", показывая, что выход канала CH1 включен.

После этого вы можете наблюдать выдаваемый генератором сигнал с широтно-импульсной модуляцией с помощью осциллографа, как показано ниже:

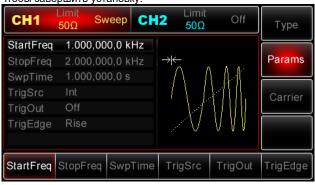

Генерация сигналов со свипированием частоты

В режиме свипирования частоты в течении заданного временного интервала свипирования изменяет частоту генерируемого сигнала от начальной до конечной частоты с заданным шагом по линейному или логарифмическому закону. В этом режиме возможен выбор между внутренним, внешним и ручным запуском. Прибор позволяет свипировать частоту синусоидального, прямоугольного, пилообразного и произвольного сигналов. Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.

Выбор функции свипирования частоты

1) Включение свипирования частоты

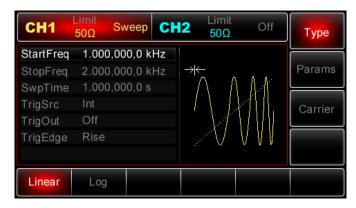
Чтобы включить функцию свипирования частоты, нажмите кнопки **Menu** → Sweep. Когда функция включена, генератор начинает выдавать сигнал со свипированной частотой в соответствии с текущими настройками.

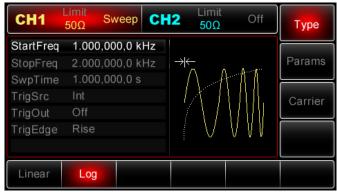

2) Выбор типа свипируемого сигнала

Когда включен режим свипирования частоты, нажмите кнопку Carrier, чтобы вызвать показанный ниже интерфейс:

Начальная и конечная частоты свипирования

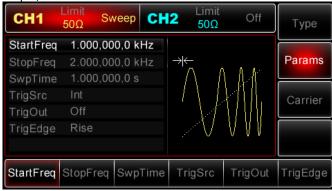
Начальная частота и конечная частота представляют собой нижний и верхний пределы интервала свипирования частоты. Генератор всегда начинает изменять частоту от начальной до конечной и затем обратно до начальной. Для установки начальной или конечной частоты нажмите функциональную кнопку Return, чтобы вернуться к интерфейсу функции свипирования частоты после установки формы сигнала для свипирования частоты, а затем задайте требуемое значение частоты с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → StartFreq, после чего затем введите требуемое значение и выберите требуемую единицу измерения, чтобы завершить установку.


- Если начальная частота меньше конечной частоты: генератор свипирует частоту вверх.
- Если начальная частота больше конечной частоты: генератор свипирует частоту вниз.
- Если начальная частота равна конечной частоте: генератор выдает сигнал на фиксированной частоте.
- Пусковой сигнал в режиме свипирования держится на высоком уровне с начальной точки до половины времени свипирования, а затем переключается на низкий уровень и держится на нем до конечной точки, в которой время свипирования истекает.


По умолчанию начальная частота устанавливается равной 1 кГц, а конечная частота – 2 кГц. Доступные для начальной и конечной частот диапазоны зависят от выбранной формы сигнала. Более подробная информация содержится в следующей таблице:

	Частота				
	UTG2062A UT		UTG	32025A	
Функции	минималь-	максималь-	мини-	макси-	
	ное значе-	ное значе-	мальное	мальное	
	ние	ние	значение	значение	
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц	
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц	
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц	
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц	
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц	

Режим свипирования


При линейном свипировании генератор варьирует частоту в линейной зависимости от времени. При логарифмическом свипировании генератор варьирует частоту в логарифмической зависимости от времени. По умолчанию устанавливается линейный режим свипирования. Для переключения на логарифмический режим нажмите функциональный кнопки Туре → Log после перехода к интерфейсу функции свипирования частоты (если открыт интерфейс выбора типа сигнала, вначале нажмите функциональную кнопку Return).

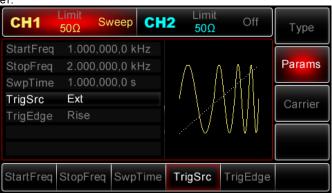
Время свипирования

Время свипирования определяется как временной интервал, который занимает изменение частоты от начальной до конечной в ходе свипирования. Время свипирования по умолчанию устанавливается равным 1 с и может быть задано в интервале от 1 мс до 500 с. Для изменения этого параметра включите интерфейс функции свипирования, а затем задайте требуемое значение времени свипирования с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → SwpTime, после чего затем введите требуемое значение и выберите требуемую единицу измерения с помощью операционных кнопок.

Источник пускового сигнала

мой временем свипирования.

Генератор выполняет один цикл свипирования частоты после получения пускового сигнала, а затем ожидает следующего запуска. Для функции свипирования частоты доступны внутренний, внешний или ручной запуск. Для выбора типа запуска включите интерфейс функции свипирования и выберите требуемый вариант запуска с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params


Тгіобго для выполнения настройки

- → TrigSrc для выполнения настройки.
 При выборе внутреннего запуска генератор будет свипировать частоту выходного сигнала непрерывно с частотой, определяе-
- 2) Когда выбран внешний запуск, генератор выполняет свипирование частоты по сигналу, поданному на разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели генератора. Каждый раз, когда на этот разъем приходит поляризованный TTL-импульс, генератор выполняет одиночный цикл свипирования.

Примечание: Когда вы выбираете внешний источник пускового сигнала, опции запуска не отображаются в списке параметров в соответствующем меню генератора, поскольку запуск выполняет-

ся по внешнему сигналу, приходящему на разъем FSK Trig, который не может одновременно использоваться для внешнего и внутреннего запуска.

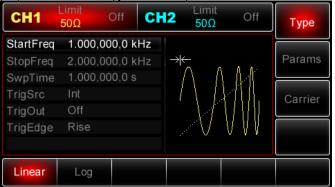
3) Когда выбран ручной запуск, генератор будет выполнять одиночный цикл свипирования по каждому нажатию кнопки **Trigger** на передней панели, а кнопка **Trigger** при этом однократно мига-

Генерация выходного пускового сигнала (Trigger Out)

Когда выбран внешний или ручной запуск, генератор формирует TTL-совместимый сигнал (прямоугольной формы). По умолчанию опция генерации выходного пускового сигнала Trigger Out выключена (значение «Off»). Для изменения этого параметра включите интерфейс функции свипирования, а затем используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params — TrigOut — On для завершения настройки.

- Если выбран внутренний запуск, генератор выдает прямоугольный сигнал с коэффициентом заполнения 50% через разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели в начале свипирования. Период пускового сигнала определяется заданным временем свипирования.
- Если выбран ручной запуск, генератор выдает импульс с длительностью более 1 мкс через разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели в начале свипирования.
- Если выбран внешний запуск, опция Trigger Out не отображается в списке параметров, потому что выходной пусковой сигнал выдается через разъем для внешнего сигнала цифровой модуляции (FSK Trig), который не может одновременно функционировать как выход для внутреннего пускового сигнала и вход для внешнего пускового сигнала.

Фронт пускового сигнала (Trigger Edge)


Независимо от того, используется ли разъем для внешнего сигнала цифровой модуляции (FSK Trig) как выход для внутреннего пускового сигнала (Trigger Out) или как вход для внешнего пускового сигнала, в обоих случаях можно указать тип фронта, по которому будет выполняться запуск. Когда этот разъем используется для ввода внешнего пускового сигнала, значение Rise параметра Trigger Edge указывает, что запуск одного цикла свипирования будет осуществляться по нарастающему фронту внешнего сигнала, а значение Fall указывает, что запуск будет осуществляться по его ниспадающему фронту. Когда разъем FSK Trig используется для вывода внутреннего пускового сигнала (в режиме внутреннего или ручного запуска), значение Rise указывает, что в момент начала свипирования генерируется сигнал с нарастающим фронтом, а значение Fall указывает, свипирования генерируется сигнал с ниспадающим фронтом. По умолчанию параметр Trigger Edge установлен на значение Rise. Для переключения на значение Fall включите интерфейс функции свипирования, а затем используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params TrigEdge → Fall для завершения настройки.

Применения

Прежде всего, необходимо включить функцию свипирования частоты. Для того, чтобы установить прямоугольный сигнал с амплитудой 1 В (Vpp), коэффициентом заполнения 50% с частотой 1 кГц от внутреннего источника в качестве свипируемого сигнала, выбрать линейный режим свипирования, начальную частоту 1 кГц, конечную частоту 50 кГц, время свипирования 2 мс и запуск по нарастающему фронту внутреннего пускового сигнала, выполните следующие действия:

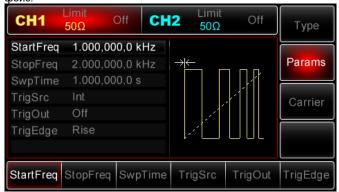
Включение функции свипирования частоты
 Нажмите кнопки Menu → Sweep → Type → Linear (если опция Туре не выделена, нажмите функциональную кнопку Туре еще

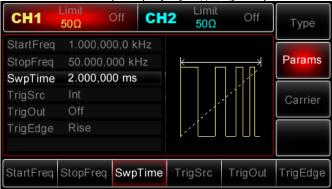
раз), чтобы включить функцию свипирования частоты.

2) Выбор типа сигнала для свипирования частоты

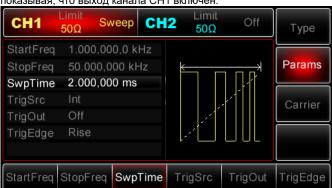

При выбранном режиме линейного свипирования нажмите функциональные кнопки Carrier → Square, и на дисплее отобразится следующий интерфейс:

После перехода к этому интерфейсу используйте многофункциональный регулятор и стрелочные кнопки для установки значения амплитуды сигнала. Вы также можете нажать функциональную кнопку Params, чтобы вызвать на дисплей следующее меню:

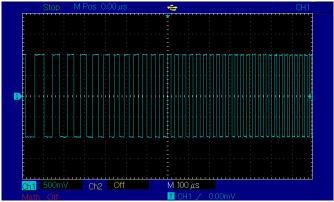

Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.


 Настройка начальной и конечной частоты, времени свипирования, источника пускового сигнала и пускового фронта По завершению настройки параметров сигнала нажмите функциональную кнопку Return, чтобы вернуться к следующему интерфейсу:

После перехода к этому интерфейсу для настройки перечисленных параметром используйте многофункциональный регулятор и стрелочные кнопки. Вы также можете нажать функциональную кнопку Params, чтобы вызвать на дисплей следующий интерфейс:



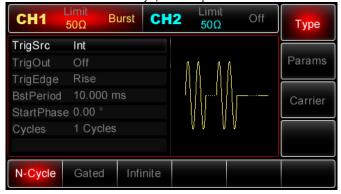
Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.



4) Включение генерации сигнала в канале

Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки **Utility** → **CH1Setting**. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок "Off" в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок "Sweep", показывая, что выход канала CH1 включен.

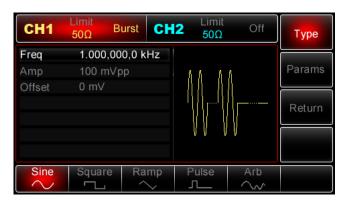
После этого вы можете наблюдать выдаваемый генератором сигнал со свипированием частоты с помощью осциллографа, как показано ниже:


Генерация пакетных сигналов

Генератор позволяет формировать циклические последовательности сигналов, известные как «пакеты» или «пачки» (burst). Для формирования пакета возможно использование внутреннего ручного и внешнего запуска. Конструкцией генератора предусмотрены три типа пакетных сигналов: пакет заданной длины (N-Cycle) стробированный пакет (Gated), пакет неограниченной длины (Infinite). Пакетные сигналы могут формироваться на основе синусоидального, прямоугольного, пилообразного, импульсного и прозвольного сигналов (за исключением постоянного уровня напряжения), а также шумового сигнала (только стробированные пакеты). Сигналы в каналах генератора СН1 и СН2 можно модулировать независимо друг от друга с одинаковыми или разными типами модуляции.

Выбор функции генерации пакетных сигналов

1) Включение функции генерации пакетных сигналов


Нажмите кнопки **Menu** → **Burst**, чтобы включить функцию генерации пакетных сигналов. Прибор будет генерировать пакетный сигнал в соответствии с текущими настройками.

2) Выбор типа сигнала

- Режим генерации пакетов заданной длины (N-Cycle): допускает использование синусоидального, прямоугольного, пилообразного, импульсного и произвольного сигналов (за исключением постоянного уровня напряжения)
- Режим генерации стробированных пакетов (Gated): допускает использование синусоидального, прямоугольного, пилообразного, импульсного и произвольного сигналов (за исключением постоянного уровня напряжения), а также шумового сигнала
- Режим генерации пакетов неограниченной длины (Infinite): допускает использование синусоидального, прямоугольного, пилообразного, импульсного и произвольного сигналов (за исключением постоянного уровня напряжения).

После включения функции генерации пакетных сигналов нажмите функциональную кнопку Carrier, чтобы выбрать тип исходного сигнала, и на дисплее отобразится следующий интерфейс:

3) Настройка частоты сигнала

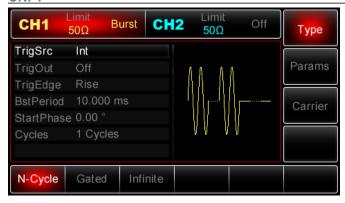
В режимах генерации пакетов заданной длины и стробированных пакетов частота исходного сигнала определяет частоту сигнала в пакете. При генерации пакетов заданной длины пакет генерируется как последовательность с заданным числом периодов на частоте исходного сигнала. При генерации стробированных пакетов пакет генерируется в течение промежутка времени, в котором пусковой сигнал имеет высокий уровень.

Примечание: Частота исходного сигнала отличается от периода следования пакетов. Период следования пакетов определяет временной промежуток между пакетами (только в режиме генерации пакетов заданной длины). По умолчанию частота исходного сигнала устанавливается равной 1 кГц для всех типов сигналов. Более подробная информация содержится в следующей таблице:

	Частота			
	UTG2062A UTG202		2025A	
Функции	минималь-	максималь-	мини-	макси-
	ное значе-	ное значе-	мальное	мальное
	ние	ние	значение	значение
Синус	1 мкГц	60 МГц	1 мкГц	25 МГц
Прямоугольный	1 мкГц	25 МГц	1 мкГц	5 МГц
Пилообразный	1 мкГц	400 кГц	1 мкГц	400 кГц
Импульсный	500 мкГц	25 МГц	500 мкГц	5 МГц
Произвольный	1 мкГц	12 МГц	1 мкГц	5 МГц

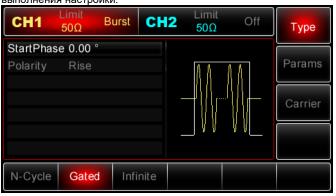
Для установки значения частоты исходного сигнала вначале выберите форму сигнала, а затем задайте требуемое значение с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Freq, введите требуемое значение частоты и выберите требуемую единицу измерения для завершения ввода.

Выбор типа пакета


Генератор позволяет формировать три типа пакетных сигналов: пакет заданной длины (N-Cycle) стробированный пакет (Gated), пакет неограниченной длины (Infinite). По умолчанию формируются пакеты заданной длины.

1) Пакеты заданной длины (N-Cycle)

Включите функцию генерации пакетных сигналов, а затем нажмите функциональные кнопки Type — N-Cycle, чтобы перейти в режим генерации пакетов заданной длины (если вы работаете с меню выбора исходного сигнала для пакетной генерации, вначале нажмите кнопку Return). В режиме генерации пакетов заданной длины генератор формирует сигнал с заданным количеством периодов (пакет) каждый раз при получении пускового сигнала. После того, как заданное количество периодов сигнала сформируется, прибор останавливает генерацию сигнала и ожидает следующего запуска. Для генерации пакетов заданной длины может использоваться внешний, внутренний и ручной запуск.


Для выбора источника пускового сигнала перейдите к интерфейсу типа пакетного сигнала (см. рисунок ниже) и установите требуемый источник пускового сигнала с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Source для выполнения настройки.

Примечание: Если выбран запуск по внешнему сигналу, опция генерации выходного пускового сигнала (Trigger Out) исчезает из списка параметров в меню, поскольку выходной пусковой сигнал выводится через разъем для внешнего сигнала цифровой модуляции (FSK Trig), который не может одновременно функционировать как выход для внутреннего пускового сигнала и вход для внешнего пускового сигнала.

2) Сторнированные пакеты (Gated)

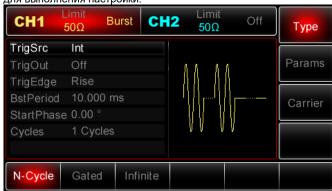
Включите функцию генерации пакетных сигналов, а затем нажмите функциональные кнопки Туре → Gated, чтобы перейти в режим генерации стробированных пакетов (если вы работаете с меню выбора исходного сигнала для пакетной генерации, вначале нажмите кнопку Return). В режиме генерации стробированных пакетов из списка параметров меню скрываются опции выбора источника пускового сигнала (TrigSrc), генерации выходного пускового сигнал (TrigOut), выбора типа пускового фронта (TrigEdge), периода следования пакетов (BstPeriod) и числа циклов в пакете (Cycles). В связи с тем, что для запуска в этом режиме может использоваться только внешний источник, запуск формирования пакетов будет выполняться по входному сигналу, принятому через разъем для внешнего сигнала цифровой модуляции (FSK Trig). Если выбрана положительная полярность пускового сигнала, и входной сигнал находится на высоком уровне, генератор будет формировать непрерывный сигнал. Когда уровень пускового сигнала сменится на низкий, будет сформирован последний период текущего сигнала, после чего генератор остановится и останется на уровне, соответствующем начальной фазе выбранного типа сигнала. В случае шумового сигнала при переключении пускового сигнала с высокого уровня на низкий генератор остановится немедленно. Для выбора полярности пускового сигнала перейдите к интерфейсу режима генерации стробированных пакетов (см. рисунок ниже) и установите требуемую полярность с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → Polarity для выполнения настройки.

3) Пакеты неограниченной длины (Infinite)

Включите функцию генерации пакетных сигналов, а затем нажмите функциональные кнопки Туре -> Infinite, чтобы перейти в режим генерации пакетов неограниченной длины (если вы работаете с меню выбора исходного сигнала для пакетной генерации, вначале нажмите кнопку Return). В режиме генерации пакетов неограниченной длины из списка параметров меню скрываются опции выбора периода следования пакетов (BstPeriod) и числа циклов в пакете (Cycles). Это означает возможность неограниченного увеличения числа периодов сигнала. Генератор формирует непрерывный сигнал, когда получает пусковой сигнал. Для генерации пакетов неограниченной длины может использоваться внешний, внутренний и ручной запуск. Для выбора источника пускового сигнала перейдите к интерфейсу типа пакетного сигнала (см. рисунок ниже) и установите требуемый источник пускового сигнала с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params -TrigSrc для выполнения настройки.

Примечание: Если выбран запуск по внешнему сигналу, опция генерации выходного пускового сигнала (Trigger Out) исчезает из списка параметров в меню, поскольку выходной пусковой сигнал

выводится через разъем для внешнего сигнала цифровой модуляции (FSK Trig), который не может одновременно функционировать как выход для внутреннего пускового сигнала и вход для внешнего пускового сигнала.


Фаза пакета

Фаза пакета представляет собой начальную фазу сигнала в пакете и может варьироваться в диапазоне от -360° до +360°. По умолчанию она равна 0°. Для изменения этого параметра перейдите к интерфейсу типа пакетного сигнала и установите требуемое значение с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → StartPhase для выполнения настройки.

- Для синусоидального, прямоугольного, пилообразного и импульсного сигналов фаза 0° соответствует точке, в которой функция, задающая форму сигнала, пересекает нулевой уровень напряжения в направлении роста сигнала.
- Для сигнала произвольной формы фаза 0° соответствует точке сигнала, загружаемой в память.
- Начальная фаза не имеет значения для шумового сигнала.

Период следования пакетов

Этот параметр применим только к режиму генерации пакетов заданной длины. Период следования пакетов (BstPeriod) представляет собой время от начала пакета до начала следующего за ним пакета. Если выбран внешний или ручной запуск, период следования пакетов исчезает из списка настраиваемых параметров. Период следования пакетов можно задавать в диапазоне от 1 мкс до 500 с. По умолчанию он равен 10 мс. Для изменения этого параметра выберите пакет заданной длины в качестве типа пакетного сигнала и установите требуемое значение периода с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → BstPeriod для выполнения настройки.

- Период следования пакетов ≥ 1 мс + период исходного сигнала * количество циклов в пакете. Период исходного сигнала является величиной, обратной частоте сигнала, настройка которой описывалась в разделе «Настройка частоты сигнала» (стр. 27).
- Если заданный период следования пакетов слишком мал, генератор автоматически увеличит его так, чтобы стала возможна генерация пакетов с заданным числом циклов.

Число циклов в пакете

В режиме генерации пакетов заданной длины параметр Cycles (число циклов в пакете) используется для того, чтобы задать число периодов исходного сигнала, из которых будет состоять пакет. Это число может принимать значения от 1 до 50000. По умолчанию оно равно 1. Для изменения этого параметра выберите пакет заданной длины в качестве типа пакетного сигнала и установите

требуемое значение числа циклов в пакете с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params — Cycles для выполнения настройки.

- Число циклов в пакете ≤ Период следования пакетов * частота исходного сигнала.
- Если заданное число циклов в пакете выходит за допустимый предел, генератор автоматически увеличит период следования пакетов так, чтобы согласовать его с заданным числом циклов в пакете (но частота исходного сигнала останется неизменной).

Источник пускового сигнала

Генератор формирует одиночный пакет при получении пускового сигнала и затем останавливается и ожидает следующего запуска. Запуск генерации пакетного сигнала может быть внутренним, внешним или ручным. Для изменения этого параметра вначале перейдите к интерфейсу настройки типа пакетного сигнала, выберите требуемый тип запуска с помощью многофункционального регулятора и стрелочных кнопок или нажмите функциональные кнопки Params → TrigSrc для выполнения настройки.

- 1) При выборе внутреннего источника пускового сигнала, пакеты генерируются на заданной частоте, соответствующей установленному периоду следования пакетов. Генератор может формировать пакеты заданной или неограниченной длины.
- 2) При выборе внешнего источника пускового сигнала, генератор получает пусковой сигнал через разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели генератора. Каждый раз, когда на этот разъем приходит поляризованный TTL-импульс, генератор формирует одиночный пакет. Это может быть пакет заданной длины, стробированный пакет или пакет неограниченной длины.

Примечание: Если выбран запуск по внешнему сигналу, опция генерации выходного пускового сигнала (Trigger Out) исчезает из списка параметров в меню, поскольку выходной пусковой сигнал выводится через разъем для внешнего сигнала цифровой модуляции (FSK Trig), который не может одновременно функционировать как выход для внутреннего пускового сигнала и вход для внешнего пускового сигнала.

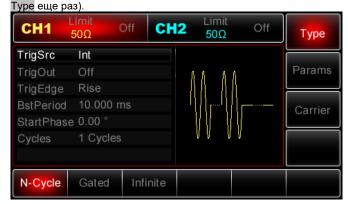
3) При выборе ручного запуска генератор формирует одиночный пакет при каждом нажатии кнопки **Trigger**, которое сопровождается однократным миганием подсветки этой кнопки. В режиме ручного запуска генератор может формировать пакеты заданной или неограниченной длины.

Генерация выходного пускового сигнала (Trigger Out)

Когда выбран внешний или ручной запуск, генератор формирует TTL-совместимый сигнал (прямоугольной формы). По умолчанию опция генерации выходного пускового сигнала Trigger Out выключена (значение «Off»). Для изменения этого параметра включите интерфейс выбора типа пакетного сигнала, а затем используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params \rightarrow TrigOut \rightarrow On для выполнения настройки.

- Если выбран внутренний запуск, генератор выдает прямоугольный сигнал с коэффициентом заполнения 50% через разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели в момент начала генерации пакета. Период пускового сигнала определяется заданным периодом следования пакетов.
- Если выбран ручной запуск, генератор выдает импульс с длительностью более 1 мкс через разъем для внешнего сигнала цифровой модуляции (FSK Trig) на задней панели в момент начала генерации пакета.
- Если выбран внешний запуск, опция Trigger Out не отображается в списке параметров, потому что выходной пусковой сигнал выдается через разъем для внешнего сигнала цифровой модуляции (FSK Trig), который не может одновременно функционировать как выход для внутреннего пускового сигнала и вход для внешнего пускового сигнала.

Фронт пускового сигнала (Trigger Edge)

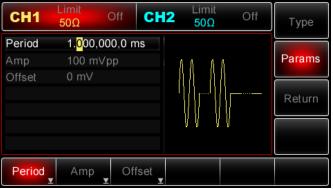

Независимо от того, используется ли разъем для внешнего сигнала цифровой модуляции (FSK Trig) как выход для внутреннего пускового сигнала (Trigger Out) или как вход для внешнего пускового сигнала, в обоих случаях можно указать тип фронта, по которому будет выполняться запуск. Когда этот разъем используется для ввода внешнего пускового сигнала, значение Rise параметра Trigger Edge указывает, что запуск формирования пакета будет осуществляться по нарастающему фронту внешнего сигнала, а значение Fall указывает, что запуск будет осуществляться

по его ниспадающему фронту. В режиме генерации стробированных пакетов, если полярность пускового сигнала положительная («Pos»), генератор формирует пакет при высоком уровне пускового сигнала. Если же полярность пускового сигнала отрицательная («Neg»), генератор формирует пакет при низком уровне пускового сигнала. Когда разъем **FSK Trig** используется для вывода внутреннего пускового сигнала (Trigger Out в режиме внутреннего или ручного запуска), значение Rise указывает, что в момент начала формирования пакета генерируется сигнал с нарастающим фронтом, а значение Fall указывает, что в момент начала формирования пакета генерируется сигнал с ниспадающим фронтом. По умолчанию параметр Trigger Edge установлен на значение Rise. Для переключения на значение Fall включите интерфейс настройки типа пакетного сигнала, а затем используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params → TrigEdge → Fall (или в режиме генерации стробированных пакетов нажмите Params -> Polarity → Neg) для выполнения настройки.

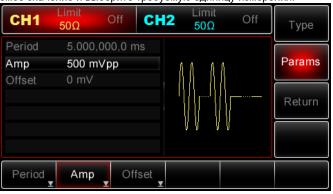
Применения

Прежде всего, необходимо включить функцию генерации пакетных сигналов. Для того, чтобы установить синусоидальный сигнал с амплитудой 500 мВ (mVpp) и периодом 5 мс в качестве исходного сигнала для генерации пакетов и выбрать функцию генерации пакетов заданной длины с периодом следования 15 мс и числом циклов пакете, равным 2, выполните следующие действия:

1) Включение функции генерации пакетных сигналов
Нажмите кнопки **Menu** → Burst → Type → N-Cycle, чтобы выбрать
пакеты заданной длины в качестве типа генерируемых пакетов
(если опция Type не выделена, нажмите функциональную кнопку

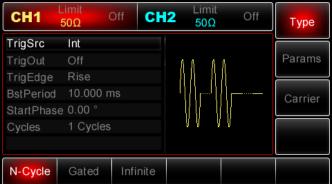


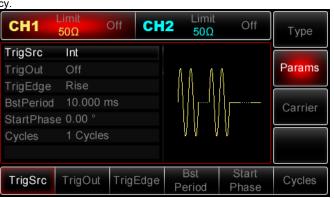
2) Выбор типа исходного сигнала для генерации пакетов При выбранной функции генерации пакетов заданной длины нажмите функциональные кнопки $Carrier \rightarrow Type \rightarrow Sine$, чтобы установить синусоидальный сигнал в качестве исходного для генерации пакетов (если опция Type не выделена, нажмите функциональную кнопку Type еще раз). В режиме пакетной генерации синусоидальный сигнал устанавливается по умолчанию,



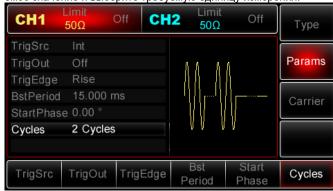
Далее вы можете воспользоваться многофункциональным регулятором и стрелочными кнопками, чтобы установить амплитуду сигнала (Примечание: если на дисплее доступна только опция частоты, и нет переключения между частотой и периодом, то для задания периода 2 мс установите значение частоты на 500 Гц, поскольку они являются взаимно обратными величинами, период = 1/частота). Вы также можете нажать функциональные кнопки Рагаms → Freq → Freq, чтобы перейти к следующему интерфейсу

(повторное нажатие на Freq позволяет переключиться между частотой и периодом в списке параметров):

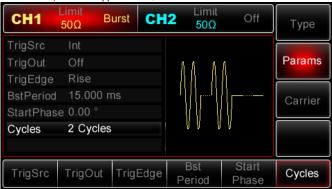

Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.


3) Установка периода следования пакетов и числа циклов в пакете

После завершения настройки несущего сигнала и относящихся к нему параметров нажмите функциональную кнопку Return, чтобы


вернуться к показанному ниже интерфейсу:

Затем воспользуйтесь многофункциональным регулятором и стрелочными кнопками, чтобы установить значения периода следования пакетов и числа циклов в пакете или нажмите функциональную кнопку Params, чтобы перейти к следующему интерфей-



Для того чтобы задать значение требуемого параметра, нажмите соответствующую функциональную кнопку, затем введите требуемое значение и выберите требуемую единицу измерения.

4) Включение генерации сигнала в канале

Нажмите кнопку **CH1** на передней панели для включения выхода канала CH1 напрямую или включите выход канала, нажав кнопки **Utility** → **CH1Setting**. При включенном выходе канала CH1, кнопка **CH1** горит, и серый значок «Off» в правой части области дисплея «Настройки канала CH1» сменяется на желтый значок «Burst», показывая, что выход канала CH1 включен.

После этого вы можете наблюдать выдаваемый генератором

Генерация сигналов произвольной формы

В постоянной памяти генератора серии UTG2000A содержатся до 48 типов стандартных форм сигналов. Детальная информация о них приведена в Таблице 4-1. Генератор позволяет создавать и редактировать сигналы произвольной формы с помощью программного обеспечения, установленного на персональном компьютере, и считывать файлы с сигналами произвольной формы, сохраненные на флеш-накопителе, через USB-порт на передней панели прибора.

Включение функции генерации произвольных сигналов

Нажмите кнопки **Menu** → Wave → Type → Arb, чтобы выбрать функцию генерации сигналов произвольной формы (если опция Туре не выделена, нажмите функциональную кнопку Туре еще раз). После включения этой функции генератор будет выдавать сигнал произвольной формы в соответствии с текущими настройками.

Режим поточечной генерации/воспроизведения

Генератор серии UTG2000A поддерживает поточечный режим (point-by-point mode) генерации сигнала произвольной формы. При поточечном выводе генератор выдает выходную частоту (238,4185791015625 Гц) на основе длины сигнала (1048576 точек) и частоты выборки и затем формирует выходной сигнал, выдавая точку за точкой на этой частоте, что позволяет избежать потерь важных точек сигнала в процессе его генерации. По умолчанию функция воспроизведения (Play Mode) отключена (статус «Off»). В этом состоянии генератор, используя встроенное программное обеспечение автоматически выполняет интерполяцию точек выборки, чтобы сформировать сигнал произвольной формы, основанный на сигнале фиксированной длины (4096 точек) и частоте, заданной в списке параметров. Чтобы включить функцию воспроизведения (Play Mode), вначале включите функцию генерации сигнала произвольной формы, а затем используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params -> PlayMode, чтобы настроить функцию воспроизведения. Если эта функция включена («On»), опции частоты и фазы не отображаются в списке параметров

Примечание: Генератор модели UTG2025A не имеет режима поточечной генерации. Вместо этого он автоматически интерполирует точки выборки, чтобы сформировать сигнал произвольной формы, основанный на сигнале фиксированной длины (8092 точки) и частоте, заданной в списке параметров.

Выбор сигнала произвольной формы

Генераторы серии UTG2000A позволяют генерировать сигналы произвольной формы, записанные во внутренней или внешней памяти. Для выбора требуемой формы сигнала вначале включите функцию генерации сигналов произвольной формы а затем используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params — ArbSel.

Примечание: Для выбора сигнала произвольной формы, записанного на USB-накопителе, вставьте USB-накопитель в порт USB на передней панели и используйте многофункциональный регулятор и стрелочные кнопки или нажмите функциональные кнопки Params → ArbSel, чтобы вначале выбрать тип памяти, из которой следует извлечь сигнал, а затем выбрать требуемую форму сигнала. Генератор UTG2062A поддерживает работу с файлами *.csv произвольной длины до 8К точек или с файлами *.bsv.

Таблица 4-1. Формы сигналов, записанные в памяти генератора

Тип	Функция
05	Синусоидальная (Sin)
Общие функции	Прямоугольная (Square)
функции	Пилообразная (Ramp)

	Отрицательная пилообразная (NegRamp)
	Положительная импульсная (PPulse)
	Отрицательная импульсная (NPulse)
	Шумовая (Noise)
	sin(x)/x (Sinc)
	Кардиограмма (Cardiac)
	Электроэнцефалограмма (EEG)
	Тональный сигнал (DualTone)
	Модуль синуса (AbsSine)
	Нарастающая ступенчатая (StairDn)
	Убывающая ступенчатая (StairUp)
	Трапециедальная (Trapezia)
	Убывающая экспоненциальная (ExpFall)
	Нарастающая экспоненциальная (ExpRise)
	Логарифмическая (Log)
	Ln
	Гаверсинус (HaverSine)
Математи-	Функция Лоренца (Lorentz)
ческие	DLorentz
функции	Квадратный корень (Sqrt)
	ARB X2
	Кубическая функция (Cubic)
	Функция Гаусса (Gauss)
	Логнормальное распределение (LogNormal)
	Функция Лапласа (Laplace)
	Гиперболический синус (SinH)
	Гиперболический косинус (CosH)
	CosInt
	Котангенс (Cot)
	Тангенс (Tan)
Тригономет-	Гиперболический тангенс (TanH)
рические	Арксинус (Asin)
функции	Ареасинус (ASinH)
	Арккосинус (Acos)
	Ареакосинус (ACosH)
	Арктангенс (Atan)
	Ареатангенс (AtanH)
	Прямоугольное окно (Boxcar)
	Треугольное окно (Triang)
	Окно Блэкмана (Blackman)
Оконные	Окно Чебышева (ChebWin)
функции	Окно с плоской вершиной (FlattopWin)
F.7	Окно Хэмминга (Hamming)
	Окно Хеннинга (Hanning)
	Окно Кайзера (Kaiser)
	Onlio Ranocpa (Raisor)

Создание и редактирование сигнала произвольной формы

Генератор UTG2000A позволяет создавать и редактировать сложные сигналы произвольной формы, используя мощное аналитическое программное обеспечение с произвольно конструируемыми формой и амплитудой сигнала. За более подробной информацией обратитесь к инструкции по работе с программным обеспечением UTG2000A.

ГЛАВА 5. Поиск и устранение неисправностей

В этой главе приведен перечень неисправностей, которые могут возникнуть у генератора UTG2000A в процессе его эксплуатации, и предложены решения по обнаружению причин этих неисправностей. При возникновении подобных ситуаций выполните шаги, указанные ниже. Если эти шаги не решат возникшую проблему, свяжитесь с дистрибьютором, который поставил вам этот генератор, или с местным представительством компании-производителя и предоставьте информацию о вашем приборе (для получения данных о приборе нажмите кнопки Utility — System — System — About).

Отсутствие изображения на дисплее (чистый экран)

На дисплее генератора отсутствует изображение даже после нажатия кнопки «On/Off».

- 1) Удостоверьтесь, что источник питания надежно подсоединен к генератору.
- 2) Удостоверьтесь, что главный выключатель питания на задней панели генератора переключен в положение «I».

- 3) Проверьте, нормально ли функционирует кнопка «On/Off» на передней панели генератора.
- 4) Перезапустите генератор.
- 5) Если генератор по-прежнему не работает, свяжитесь с дистрибьютором или с местным представительством компаниипроизводителя для передачи прибора на сервисное обслуживание.

Отсутствие сигнала на выходе генератора

Настройки корректны, но на выходе генератора отсутствует сигнал.

- 1) Удостоверьтесь, что ВNС-кабель правильно подсоединен к выходному разъему генератора.
- 2) Удостоверьтесь, что кнопки СН1 и СН2 нажаты.
- 3) Сохраните текущие настройки генератора на USB-накопитель, а затем сбросьте настройки на заводские («factory default settings») и перезапустите генератор.
- 4) Если генератор по-прежнему не работает, свяжитесь с дистрибьютором или с местным представительством компании-производителя для передачи прибора на сервисное обслуживание

Проблемы с распознаванием USB-накопителя

- 1) Удостоверьтесь, что USB-флеш-накопитель работает нормально.
- 2) Удостоверьтесь, что, что ваш USB-накопитель представляет собой именно флеш-накопитель, а не жесткий диск, работа с которым не поддерживается генератором.
- 3) Перезапустите генератор и еще раз вставьте в него USBнакопитель для повторной проверки.
- 4) Если генератор по-прежнему не обнаруживает USBнакопитель, свяжитесь с дистрибьютором или с местным представительством компании-производителя.

ГЛАВА 6. Сервисное обслуживание и техническая поддержка

Обновление программного обеспечения прибора

Свяжитесь с компанией UNI-Т или зайдите на наш сайт в Интернете, чтобы получить последнюю версию программного обеспечения, распакуйте полученный архив и запустите встроенную программу обновления системы для установки загруженной версии программного обеспечения на ваш генератор. Удостоверьтесь, что генератор нормально функционирует с последней версией программного обеспечения, выпущенной UNI-Т.

- 1. Включите ваш генератор серии UTG2000A и нажмите кнопки Utility → System → System → About, чтобы получить информацию о вашем приборе, включая модель генератора, версию аппаратного обеспечения, версию программного обеспечения и т.д.
- 2. Получите архив с последней версией программы и файл с инструкцией по обновлению от компании UNI-Т или загрузите ее с сайта компании. Для обновления системы вашего генератора выполните действия, указанные в инструкции по обновлению.

Приложение А. Заводские настройки

Параметр	Заводские настройки	Параметр	Заводские настройки	
Параметры настройки каналов				
Current Carrier (несущий сигнал)	Sine	OutLoad (выходной импеданс)	50 Ω	
SyncOut (синхровыход)	CH1	СН1/СН2 Output (выходной сигнал канала СН1/СН2)	OFF	
Inverted Channel Output (инверсия выходного сигнала)	OFF	Output Limit (ограничение вы- ходного сигнала)	OFF	
Limit High (верхний предел)	+5V	Limit Low (нижний предел)	-5V	
Базовые сигналы				
Frequency (частота)	0 mV	Amplitude (амплитуда)	100 mVpp	
DC Offset (напряжен ие смещения)	50%	Start Phase (начальная фаза)	0°	
Duty Cycle of Pulse (коэффициент за- полнения импульса)	50%	Ramp Symmetry (симметрия пило- образного сигна-	100%	

инструкци	IN IIO JK	СПЛУАТАЦИИ:	<u> </u>	
		ла)		
Callian Calaa of Dulaa		Rising Edge of		
Falling Edge of Pulse	1.110	Pulse	1	
(время убывания фронта импульса)	1 us	(время нарастания	1 us	
фронта импульса)		фронта импульса)		
	Произволь	ный сигнал		
Built-in Arbitrary		Play Mode		
Waveform	Sinc	(режим воспроиз-	OFF	
(встроенная форма		`` ведения)		
сигнала)		AO DY DOUG (AM)		
Modulation Source	ілитудная к	модуляция (AM) Modulation Shape		
(источник модули-	Internal	(форма модули-	Sine	
рующего сигнала)	moma	рующего сигнала)	Cirio	
Modulation				
Frequency	10011-	Modulation Depth	1000/	
(частота модулиру-	100Hz	(глубина модуляции)	100%	
ющего сигнала)		модуляции)		
Ч	астотная мо	дуляция (FM)		
Modulation Source		Modulation Shape		
(источник модули-	Internal	(форма модули-	Sine	
рующего сигнала)		рующего сигнала)		
Modulation		Frequency		
Frequency	100Hz	Deviation (девиация	100%	
(частота модулиру- ющего сигнала)		(девиация частоты)		
<u> </u>	разовая мог	частоты <i>)</i> цуляция (РМ)		
Modulation Source	Internal	Modulation Shape	Sine	
Modulation	momai	Modulation Onape	Jilie	
Frequency		Phase Deviation		
(частота модулиру-	100Hz	(девиация фазы)	180°	
`ющего сигнала)		(, , , , , , , , , , , , , , , , , , ,		
Широтно	-импульсна	ая модуляция (PWI	M)	
Modulation Source		Modulation Shape		
(источник модули-	Internal	(форма модули-	Pulse	
рующего сигнала)		рующего сигнала)		
		Duty Cycle		
Modulation		Duty Cycle		
Modulation Frequency	40011-	Deviation	200/	
Frequency (частота модулиру-	100Hz	Deviation (девиация коэф-	20%	
Frequency	100Hz	Deviation (девиация коэф- фициента запол-	20%	
Frequency (частота модулиру- ющего сигнала)		Deviation (девиация коэф- фициента запол- нения)	20%	
Frequency (частота модулиру- ющего сигнала) Амп л		Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK)	20%	
Frequency (частота модулиру- ющего сигнала) Ампл Modulation Source	итудная ма	Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK) ASK Rate		
Frequency (частота модулиру- ющего сигнала) Ампл Modulation Source (источник модули-		Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK)	20% 100Hz	
Frequency (частота модулиру- ющего сигнала) Ампл Modulation Source (источник модули- рующего сигнала)	итудная ма Internal	Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK) ASK Rate (скорость ампли- тудной манипуля- ции)		
Frequency (частота модулиру- ющего сигнала) Ампл Modulation Source (источник модули- рующего сигнала)	итудная ма Internal	Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK) ASK Rate (скорость ампли- тудной манипуля- ции) ипуляция (FSK)		
Frequency (частота модулиру- ющего сигнала) Моdulation Source (источник модули- рующего сигнала) Час Modulation Source	итудная ма Internal	Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK) ASK Rate (скорость ампли- тудной манипуля- ции) ипуляция (FSK) FSK Rate	100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модули-	итудная ма Internal	Деуіаtіоп (девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляции) ипуляция (FSK) FSK Rate (скорость частот-		
Frequency (частота модулирующего сигнала) Ампл Modulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала)	итудная ма Internal	Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK) ASK Rate (скорость ампли- тудной манипуля- ции) ипуляция (FSK) FSK Rate	100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency	итудная ма Internal	Деуіаtіоп (девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляции) ипуляция (FSK) FSK Rate (скорость частот-	100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка)	итудная ма Internal тотная ман Internal 10kHz	Deviation (девиация коэф- фициента запол- нения) нипуляция (ASK) ASK Rate (скорость ампли- тудной манипуля- ции) ипуляция (FSK) FSK Rate (скорость частот- ной манипуляции)	100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка)	итудная ма Internal тотная ман Internal 10kHz	Деviation (девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляции) ипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK)	100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Мodulation Source	Internal TOTHAS MAH Internal 10kHz ЗОВАЯ МАНИ	Деуіатіоп (девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate	100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала)	итудная ма Internal тотная ман Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой	100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Мodulation Source	Internal Internal Internal 10kHz 30вая мани	Деуіатіоп (девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate	100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала)	Internal TOTHAS MAH Internal 10kHz ЗОВАЯ МАНИ	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой	100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения)	Internal Internal Internal Internal 10kHz Internal Internal Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой	100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения)	Internal Internal Internal Internal 10kHz Internal Internal Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой манипуляции)	100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения) Sweep Туре (режим	Internal Internal Internal Internal 10kHz Internal Internal Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляции) ипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) туляция (PSK) РSК Rate (скорость фазовой манипуляции) ние частоты Start Frequency (начальная	100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения) Sweep Туре (режим свипирования)	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) Туляция (PSK) РSК Rate (скорость фазовой манипуляции) В Start Frequency (начальная частота)	100Hz 100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения) Sweep Туре (режим свипирования) Stop Frequency	Internal Internal Internal 10kHz 30вая мани Internal 180° Свипирован	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) В Start Frequency (начальная частота) Sweep Time	100Hz 100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Моdulation Source (источник модулирующего сигнала) РSК Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) Туляция (PSK) РЗК Rate (скорость фазовой манипуляции) В Start Frequency (начальная частота) Sweep Time (время	100Hz 100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота)	Internal Internal Internal 10kHz 30вая мани Internal 180° Свипирован	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость частотной манипуляции) туляция (PSK) РSК Rate (скорость фазовой манипуляции) В Start Frequency (начальная частота) Sweep Time (время свипирования)	100Hz 100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Мodulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Мodulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source	Internal Internal Internal 10kHz 30вая мани Internal 180° Свипирован Linear	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой манипуляции) Тудной манипуляции) В Start Frequency (начальная частота) Sweep Time (время свипирования) Trigger Out	100Hz 100Hz 100Hz 1kHz 1s	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Моdulation Source (источник модулирующего сигнала) РSК Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового	Internal Internal Internal 10kHz 30вая мани Internal 180° Свипирован	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) Тудной манипуляции) ние частоты Start Frequency (начальная частота) Sweep Time (время свипирования) Trigger Out (выходной пуско-	100Hz 100Hz 100Hz	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Моdulation Source (источник модулирующего сигнала) РSК Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала)	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой манипуляции) Тудной манипуляции) В Start Frequency (начальная частота) Sweep Time (время свипирования) Trigger Out	100Hz 100Hz 100Hz 1kHz 1s	
Frequency (частота модулирующего сигнала) Aмпл Modulation Source (источник модулирующего сигнала) Час Modulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Modulation Source (источник модулирующего сигнала) PSK Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала) Trigger Edge	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость частотной манипуляции) Пуляция (PSK) Р	100Hz 100Hz 100Hz 1kHz 1s	
Frequency (частота модулирующего сигнала) Aмпл Modulation Source (источник модулирующего сигнала) Час Modulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Modulation Source (источник модулирующего сигнала) PSK Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала) Trigger Edge	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой манипуляции) Туляция (PSK) РЗК Rate (скорость фазовой манипуляции) В тастоты Start Frequency (начальная частота) Sweep Time (время свипирования) Тrigger Out (выходной пусковой сигнал)	100Hz 100Hz 100Hz 1kHz 1s OFF	
Frequency (частота модулирующего сигнала) Aмпл Modulation Source (источник модулирующего сигнала) Час Modulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Modulation Source (источник модулирующего сигнала) PSK Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала) Trigger Edge Ген Вurst Mode	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) Тудной манипуляции) Пуляция (PSK) РЯК Rate (скорость фазовой манипуляции) Тудной манипуляции) Пуляция (PSK) РЯК Rate (скорость фазовой манипуляции) Тудной манипуляции) Пуляция (PSK) РЯК Rate (скорость фазовой манипуляции) Тудной манипуляции) Тудной пулковой сигнал) Тудной пусковой сигналов Тудных сигналов Start Phase	100Hz 100Hz 100Hz 1kHz 1s	
Frequency (частота модулирующего сигнала) Aмпл Modulation Source (источник модулирующего сигнала) Час Modulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Modulation Source (источник модулирующего сигнала) PSK Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала) Trigger Edge	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSK Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSK Rate (скорость фазовой манипуляции) Туляция (PSK) РЗК Rate (скорость фазовой манипуляции) В тастоты Start Frequency (начальная частота) Sweep Time (время свипирования) Тrigger Out (выходной пусковой сигнал)	100Hz 100Hz 100Hz 1kHz 1s OFF	
Frequency (частота модулирующего сигнала) Aмпл Modulation Source (источник модулирующего сигнала) Час Modulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Фа Modulation Source (источник модулирующего сигнала) PSK Phase (фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала) Trigger Edge Ген Вигst Mode (тип пакетов)	Internal	Реуіатіоп (девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) Туляция (PSK) РЗК Rate (скорость фазовой манипуляции) В такте (скорость фазовой манипуляции) Тиве частоты В такте (время свипирования) Тгіддег Out (выходной пусковой сигнал) В такте Сигналов В такте Сигналов (начальная фаза)	100Hz 100Hz 100Hz 1kHz 1s OFF	
Frequency (частота модулирующего сигнала) Моdulation Source (источник модулирующего сигнала) Час Моdulation Source (источник модулирующего сигнала) Нор Frequency (частота скачка) Моdulation Source (источник модулирующего сигнала) РSК Phase (Фаза смещения) Sweep Туре (режим свипирования) Stop Frequency (конечная частота) Trigger Source (источник пускового сигнала) Trigger Edge Ген Вurst Mode (тип пакетов) Burst Period	Internal	Девиация коэффициента заполнения) нипуляция (ASK) АSК Rate (скорость амплитудной манипуляция (FSK) FSK Rate (скорость частотной манипуляции) пуляция (PSK) РSК Rate (скорость фазовой манипуляции) Туляция (PSK) РЗК Rate (скорость фазовой манипуляции) В тастоты Start Frequency (начальная частота) Sweep Time (время свипирования) Тrigger Out (выходной пусковой сигнал) В тых сигналов Start Phase (начальная фаза) В urst Count	100Hz 100Hz 100Hz 1kHz 1s OFF	

Gated Polarity (полярность стро- бирования)	Pos	Trigger Source (источник пусково- го сигнала)	Internal		
Trigger Out (выходной пусковой сигнал)	OFF	Trigger Edge (пусковой фронт)	Rise		
	Системные параметры				
IP Туре (тип IP-протокола)	DHCP	Clock Source (источник тактовой частоты)	Internal		
Clock Out	OFF	Веер (звуковые сигналы)	On		
Number Separator (десятичный разделитель)	,	Backlight (яркость подсветки)	100%		
Language* (язык)	Зависит от заводских настроек конкретной версии				

Приложение Б. Технические характеристики

-	технические характе UTG2062A		-	00254
Модель			UTG2025A	
Число каналов	Два		Два	
Максимальная частота	60 МГц		25 МГц	
Частота выборки (семплирования)	250 МГц (мегавыборок/с)		125 МГц (мегавыборок/с)	
Формы сигналов	Синусоида	альный, пряі	моугольный, пилооб- иумовой, постоянный,	
'	,	произво		,
Рабочие режимы			ерывный, модулиро-	
Типы модуляции	ванный, свипированный, пакетный сигналі амплитудная модуляция (АМ), частотная м дуляция (FМ), фазовая модуляция (РМ), аплитудная манипуляция (ASK), частотная манипуляция (FSK), фазовая манипуляция (PSK), широтно-импульсная модуляция (PWM)		тотная мо- і (РМ), ам- астотная ипуляция	
Характеристики с	игналов			
Синусоидальный				
Частотный диапазон	1 мкГц –	60 МГц	1 мкГц -	- 25 МГц
Разрешение		1 мк	:Гц	
Точность	90 дней: ±5			(18-28°C)
	90 дней: ±50 ppm, 1 год: ±100 ppm (18-28°С) Условия тестирования: выходная мощность (дБм			
Нелинейное	0-20 кГц	-70 дБн	0-100 кГц	-60 дБн
Искажение	20-100 кГц	-65 дБн	0,1-1 МГц	-50 дБн
(типичные значе- ния)	0,1-1 МГц	-50 дБн	1-25 МГц	-35 дБн
ния)	1-20 МГц	-40 дБн		
	20-60 МГц	-35 дБн		
Полное нелиней- ное искажение (типичное значе- ние)	0-20 кГц, 1 В <0,2%			
Паразитный сиг-	0-10 МГц,	< -70 дБн	0-1 МГц,	< -70 дБн
нал (нелинейный,	10-60 МГц,		1-5 МГц, < -40 дБн	
типичное значе- ние)	10-60 МГц, < -70 дБн+6 дБ/октава		5-25 МГц, <-50 дБн	
Фазовый шум	Смещение на 1 кГц: - 105 дБн/Гц			
(типичное значе-			«Гц: - 115 дБн/Гц	
ние)	Смещение на 100 кГц: - 125 дБн/Гц		Бн/Гц	
Прямоугольный с	игнал			
Частотный диапазон	1 мкГц – 25 МГц		1 мкГц – 5 МГц	
Разрешение	1 мкГц			
Время нараста- ния/убывания фронтов	<13 нс (типичное для сигнала 1 кГц, 1 В)			пичное для І кГц, 1 В)
выброс на фрон- те импульса (ти- пичное значение)	<2%			
Симметрия (при коэффициенте	1% от перис		ода + 4 нм	

заполнения ниже 50%)		
Нестабильность		
(типичное значе-	1 нс + 100 ppm (1	10 ⁻⁴) от периода
` ние)		- / 1 11
Пилообразный си	г нал	
Частотный	1 мкГц —	400 кГц
диапазон	•	
Разрешение	1 MH	
Нелинейность	<0,1% от максимально значение для сигнала	
I IOSIVIII OVIII OOTB	100	
Симметрия	0,0-10	0,0%
Импульсный сигн	ал	
Частотный	500 мкГц – 25 МГц	500 мкГц – 5 МГц
диапазон	•	· ·
Разрешение	1 мн	ац
Диапазон измене- ния ширины им-	200 нс – 2000 с	40 нс – 2000 с
пульса	200 HC - 2000 C	40 NC - 2000 C
Диапазон измене-		20 2/=
ния длительности	12 нс – 2 мс	20 нс – 2 мс (типич- ное значение 24 нс)
фронта		
Выброс на фрон- те импульса (ти-	<2'	0/6
пичное значение)	~2	/V
Нестабильность		
(типичное значе-	1 нс + 100 ppm (1	10 ⁻⁴) от периода
ние)		
Гауссов шум	22.115 (2.5)	05145 (0.5)
Ширина полосы	60 МГц (-3 дБ), типичное значение	25 МГц (-3 дБ), типичное значение
Смешение постоя	інной составляющей	типичное значение
Диапазон (макси-	ппои осотавлинощой	
 мальное значение		
суммы перемен-	±5 B (5	0 Ом)
ной и постоянной		
составляющих)	±/119/, от смоннония	± 0.5% 2MBBMTVBL
составляющих) Погрешность смещения	±(1% от смещения + 5 г	•
Погрешность смещения		иВ)
Погрешность смещения Характеристики с Частотный	+ 5 і игналов произвольной	мВ) формы
Погрешность смещения Характеристики с Частотный диапазон	+ 5 і игналов произвольной 1 мкГц — 12 МГц	иВ) формы 1 мкГц – 5 МГц
Погрешность смещения Характеристики с Частотный диапазон Разрешение	+ 5 і игналов произвольной	иВ) формы 1 мкГц – 5 МГц
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи	+ 5 і игналов произвольной 1 мкГц — 12 МГц	иВ) формы 1 мкГц – 5 МГц
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мк	иВ) формы 1 мкГц – 5 МГц ГЦ
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мк	мВ) формы 1 мкГц – 5 МГц КГц 2-8К точек
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкл	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (раз-	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкл	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное	+ 5 г игналов произвольной 1 мкГц — 12 МГц 1 мк 2-1М точек 14 бит (вкл 250 МГц (мегавыборок/с)	мВ) формы 1 мкГц — 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли	мВ) формы 1 мкГц — 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нараста-	+ 5 г игналов произвольной 1 мкГц — 12 МГц 1 мк 2-1М точек 14 бит (вкл 250 МГц (мегавыборок/с)	мВ) формы 1 мкГц — 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность	+ 5 г игналов произвольной 1 мкГц — 12 МГц 1 мк 2-1М точек 14 бит (вкл 250 МГц (мегавыборок/с)	мВ) формы 1 мкГц — 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадра-	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн	мВ) формы 1 мкГц – 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклоне-	+ 5 г игналов произвольной 1 мкГц — 12 МГц 1 мк 2-1М точек 14 бит (вкл 250 МГц (мегавыборок/с)	мВ) формы 1 мкГц — 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадра-	+ 5 г игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн	мВ) формы 1 мкГц – 5 МГц СГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm	мВ) формы 1 мкГц — 5 МГц кГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мк 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm	мВ) формы 1 мкГц — 5 МГц кГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мк 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо ыходного сигнала 0-10 МГц: 1 мЕ 0-10 МГц: 1 мЕ	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 2 мВ - 20 В
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 2 мВ - 20 В
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо ыходного сигнала 0-10 МГц: 1 мЕ 0-10 МГц: 1 мЕ	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 3 (высокий импеданс)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд Погрешность (для синусоидального сигнала 1 кГц)	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо ыходного сигнала 0-10 МГц: 1 мЕ 0-10 МГц: 1 мЕ 10-60 МГц: 2 мВ – 10 Е ±(1% установленног	мВ) формы 1 мкГц — 5 МГц кГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) мВ - 20 В 3 (высокий импеданс) о значения + 2 мВ)
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд Погрешность (для синусоидального сигнала 1 кГц) Неравномерность	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мк 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо ыходного сигнала 0-10 МГц: 1 мЕ 0-10 МГц: 1 мЕ 10-60 МГц: 2 мВ – 10 Е ±(1% установленног < 200 кГц: 0,1 дБ	мВ) формы 1 мкГц — 5 МГц кГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 8 В (высокий импеданс) о значения + 2 мВ) < 100 кГц: 0,1 дБ
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд Погрешность (для синусоидального сигнала 1 кГц) Неравномерность амплитудной ха-	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мк 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо ыходного сигнала 0-10 МГц: 1 мЕ 0-10 МГц: 2 мВ – 10 Е ±(1% установленног < 200 кГц: 0,1 дБ 200 кГц – 60 МГц:	мВ) формы 1 мкГц — 5 МГц КГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 8 (высокий импеданс) о значения + 2 мВ) < 100 кГц — 25 МГц: 100 кГц — 25 МГц:
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд Погрешность (для синусоидального сигнала 1 кГц) Неравномерность амплитудной характеристики	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мк 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фот ыходного сигнала 0-10 МГц: 1 мв 0-10 МГц: 1 мв 0-10 МГц: 2 мВ – 10 в ±(1% установленног < 200 кГц – 60 МГц: 0,1 дБ	мВ) формы 1 мкГц — 5 МГц кГц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 8 В (высокий импеданс) о значения + 2 мВ) < 100 кГц: 0,1 дБ
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд Погрешность (для синусоидального сигнала 1 кГц) Неравномерность амплитудной характеристики Характеристики В	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мн 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фо ыходного сигнала 0-10 МГц: 1 мв 0-10 МГц: 1 мв 0-10 МГц: 2 мВ – 10 в ±(1% установленног < 200 кГц: 0,1 дБ 200 кГц – 60 МГц: 0,1 дБ	мВ) формы 1 мкГц — 5 МГц (Гц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 8 мВ - 20 В 3 (высокий импеданс) о значения + 2 мВ) < 100 кГц — 25 МГц: 0,2 дБ
Погрешность смещения Характеристики с Частотный диапазон Разрешение Длина записи сигнала Вертикальное разрешение (разрядность) Частота выборки Минимальное время нарастания/убывания фронта Нестабильность (среднеквадратичное отклонение, типичное значение Объем энергонезависимой памяти Характеристики в Диапазон амплитуд Погрешность (для синусоидального сигнала 1 кГц) Неравномерность амплитудной характеристики	+ 5 п игналов произвольной 1 мкГц – 12 МГц 1 мк 2-1М точек 14 бит (вкли 250 МГц (мегавыборок/с) 35 нс, типичн 6 нс + 30 ppm 48 записей фот ыходного сигнала 0-10 МГц: 1 мв 0-10 МГц: 1 мв 0-10 МГц: 2 мВ – 10 в ±(1% установленног < 200 кГц – 60 МГц: 0,1 дБ	мВ) формы 1 мкГц — 5 МГц (Гц 2-8К точек очая знак) 125 МГц (мегавыборок/с) ое значение 15 нс + 100 ppm орм сигналов мВ - 10 В 3 — 5 В (50 Ом) 8 МВ - 20 В 3 (высокий импеданс) о значения + 2 мВ) < 100 кГц — 25 МГц: 0,2 дБ мое значение

OTTI-T			
	(пиковое) относительно земли		
	Защита от короткого замыкания, все BN	IC-	
Защита	разъемы на передней панели работают т	оль-	
-	ко на выход		
Типы модуляции			
Амплитудная мод		- 6	
Несущий сигнал	Синусоидальный, прямоугольный, пило разный, произвольный	00-	
Источник модули- рующего сигнала	Внешний/внутренний		
Модулирующий сигнал	Синусоидальный, прямоугольный, пило разный, шумовой, произвольный	об-	
Частота модуляции	2 мГц – 50 кГц		
Глубина модуляции	0-120%		
Частотная модуля			
Несущий сигнал	Синусоидальный, прямоугольный, пило разный, произвольный	об-	
Источник модули- рующего сигнала	Внешний/внутренний		
Модулирующий сигнал	Синусоидальный, прямоугольный, пило разный, шумовой, произвольный	об-	
Частота	2 мГц — 50 кГц		
модуляции Пориония настать	<u> </u>	15	
Девиация частоты Фазовая модуля ц	і мкі ц — 30 ійі ц — і мкі ц — 12,5 ій ция (РМ)	пц	
Несущий сигнал	Синусоидальный, прямоугольный, пило разный, произвольный	об-	
Источник модули- рующего сигнала	Внешний/внутренний		
Модулирующий	Синусоидальный, прямоугольный, пило	об-	
сигнал Частота	разный, шумовой, произвольный		
модуляции	2 мГц – 50 кГц		
Девиация фазы	цуляции		
Амплитудная ман	ипуляция (ASK)		
Несущий сигнал	Синусоидальный, прямоугольный, пило разный, произвольный	об-	
Источник модули- рующего сигнала	Внешний/внутренний		
Модулирующий сигнал	Прямоугольный с коэффициентом запол ния 50%	іне-	
Частота модуляции	2 мГц – 100 кГц		
Частотная манипу	иляция (FSK)		
Несущий сигнал	Синусоидальный, прямоугольный, пило	об-	
Источник модули-	разный, произвольный Внешний/внутренний		
рующего сигнала	, ,		
Модулирующий сигнал	Прямоугольный с коэффициентом запол ния 50%	іне-	
Частота модуляции	2 мГц – 100 кГц		
Широтно-импуль	сная модуляция (PWM)		
Несущий сигнал	Импульсный		
Источник модули-	Внешний/внутренний		
рующего сигнала Модулирующий	Синусоидальный, прямоугольный, пило	об-	
сигнал Частота	разный, шумовой, произвольный 2 мГц – 50 кГц		
модуляции	·		
Девиация фазы 0%-49,99% от ширины импульса			
Свипирование ча Несущий сигнал	Синусоидальный, прямоугольный, пило	об-	
Режим	разный, произвольный Линейный, логарифмический		
свипирования Время			
свипирования	1 MC – 500 C ± 0,1%		
Тип запуска Генерация пакет н	Внутренний, внешний, ручной		
	Синусоидальный, прямоугольный, пило	об-	
Несущий сигнал	разный, шумовой, произвольный		

VIIICII VIL	MINITIO OKCIDITAT	<u> АЦИИ. ОТ В 2000А</u>	
Тип пакета	Заданной длины (. , ,	
Начальная фаза	неограниченной длины, стробированный -360° – +360°		
Период следова-	1 мкс – 500 c ± 0,1%		
ния пакетов	1 MKC – 500	0 c ± 0,1%	
Источник строби- рующего сигнала	Внешний запуск		
Источник пусково-			
го сигнала ๊	Внешний, внутр	енний, ручной	
Генерация синхро			
Уровень Частота	Совместимый с 1 мГц – 60 МГц	с I IL-логикой 1 мГц – 25 МГц	
Выходной			
импеданс	50 Ом (типичн	,	
Развязка выхода Разъемы на задн	По постоян	ному току	
Вход модулиру-	±5 В (пи	ковое)	
ющего сигнала	Входной импе		
Вход/выход сиг-	Частотный диапазо		
нала с частотой 10 МГц	TTL-совмести	імый сигнал	
	10 кОм (входной) /	10 кОм (входной) /	
Dyen/puma =	50 Ом (выходной) (ти-	50 Ом (выходной)	
Вход/выход сиг- нала с частотой	пичное значение), раз- вязка входа по посто-	(типичное значение), развязка входа по	
10 МГц, импеданс	янному току, развязка	постоянному току,	
" ·- <u>H</u>	выхода по переменно-	развязка выхода по	
	му току	переменному току	
Время блокировки	< 2 с (типично	е значение)	
Внешний пуско-	TTL-совме	естимый	
вой сигнал Вход пускового с	игнала (Trigger In)		
Уровень входного			
сигнала	TTL-совме	естимыи	
Наклон пускового фронта	Выбор между нараста фрон	•	
Входной импе- данс	> 10 кОм, развязка по постоянному току		
Задержка	Развертка < 500 мкс (типичное значение)		
Генерация выход	цного пускового сигнала (Trigger Out)		
Уровень сигнала	TTL-совмести		
Ширина импульса	> 400 нс (типич	ное значение)	
Выходной импеданс	50 Ом (типичн	ое значение)	
импеданс Максимальная			
частота	1 M	ІЦ	
Частотомер			
Уровень входного сигнала	TTL-совме	естимый 	
Частотный диапа-			
зон входного сиг-	100 мГц –	200 МГц	
нала Погрешность	+51 nnm (5 1·10 ⁻⁵)	
Разрешение	±51 ppm (5,1·10 ⁻⁵) 6 бит/с		
Развязка входа	По постоянному току,		
Общие характери			
Дисплей			
Тип дисплея	4,3-дюймовый, ТFT, це лический		
Разрешение	480 (по горизонтали)		
Питание			
Напряжение	Переменное, 100–240 В		
Питания	перенапряже	EHUR CAT II	
Потребляемая мощность	< 50 BT	< 40 Bt	
Предохранитель	2A, 25	50 B	
Условия окружаю		20 4000	
Температура	Рабочая 10	. C − 40°C	
Способ охлажде-	Воздушное, принудит	ельное (вентилятор)	
НИЯ Относитольная			
Относительная влажность	<+35°C: 35-40°C		
Высота			
	Рабочая: до 3000 м		

	Нерабочая: до 15000 м		
Механические характеристики			
Размер	305 х 230 х 93 мм		
Масса (чотто) 3,10 кг (без учета упаковки)			
Масса (нетто) 4,10 кг (с учетом упаковки)			

Приложение В. Перечень принадлежностей

Модель	UTG2000A (двухканальный)	
	Кабель питания (соответствующий стандартам страны/региона поставки), 1 шт.	
_	USB-кабель, 1 шт.	
Стандартный	BNC-кабель (1 м), 2 шт.	
	Инструкция по эксплуатации, 1 шт.	
	Компакт-диск, 1 шт.	
Дополнительный	Сетевой интерфейс LAN для UT2062A	

Приложение Г. Техническое обслуживание

Общий уход

- Не храните и не помещайте прибор в места, где его дисплей может оказаться под прямыми солнечными лучами на продолжительное время.
- Во избежание повреждений прибора или проводов не помещайте их в места с присутствием паров, жидкостей и растворителей.

Очистка

- Регулярно чистите прибор по мере необходимости.
- Перед очисткой отключайте питание прибора. Очищайте прибор отжатой влажной тканью. Не допускается попадание водяных капель с ткани на прибор. Для очистки от пыли и грязи рекомендуется использовать воду или мягкодействующее моющее средство. Не применяйте химических реагентов, содержащих бензол, толуол, диметилбензол, ацетон и другие агрессивные вещества.
- Будьте осторожны при очистке жидкокристаллического дисплея, чтобы не поцарапать его защитное покрытие.
- Не используйте абразивы и коррозионные агенты, которые могут повредить поверхность прибора.

Предупреждение: во избежание короткого замыкания и получения травм, связанных с остатками воды, удостоверьтесь, что прибор совершенно сухой, перед тем как включать его.

В настоящую инструкцию могут быть внесены изменения без предварительного уведомления.

Производитель:

Uni-Trend Technology (China) Limited, No 6, Gong Ye Bei 1st Road

Национальная зона развития высокотехнологичного производ-

ства Озеро Суншань (Songshan Lake),

Дунгуань (Dongguan city),

Провинция Гуандун (Guangdong), Китай

Почтовый индекс: 523 808

Головной офис:

Uni-Trend Group Limited

Rm901, 9/F, Nanyang Plaza

57 Hung To Road

Kwun Tong

Kowloon, Hong Kong Тел.: (852) 2950 9168 Факс: (852) 2950 9303 E-mail: info@uni-trend.com http://www.uni-trend.com