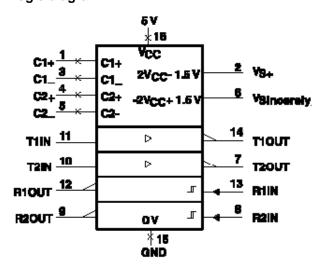


VS232

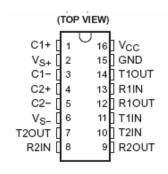
Dual High-Performance RS232 Line Drivers/Receivers

General Description


The VS232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC ™ library.

The Operating free-air temperature T_A of VS232 is from 0°C to 70°C.

General Characteristics


- Operates from a Single 5-V Power Supply
- By LinBiCMOSTM technology
- Two Drivers and Two Receivers
- 30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- Compatible with Maxim MAX232
- ESD Protection Exceeds 2000V

Logic diagram

Pin Configuration

VS232 . . . DW or N PACKAGE

Applications

- Battery-Powered Systems,
- Terminals,
- Modems, and
- Computers

SPECIFICATIONS

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input supply voltage range, V_{CC} = -0.3 V to 6 V

Positive output supply voltage range, V_{S+} V_{CC} – 0.3 V to 15 V

Input voltage range, V_1 : Driver -0.3 V to VCC + 0.3 V

Receiver $\pm 30 \text{ V}$

Output voltage range, V_{0} : T10UT, T20UT V_{S-} = 0.3 V to V_{S+} + 0.3 V

R10UT, R20UT $-0.3 \text{ V to V}_{CC} + 0.3 \text{ V}$

Short-circuit duration : T10UT, T20UT Unlimited

Operating free-air temperature range, T_A : VS232 0°C to 70°C

Storage temperature range, T_{stg} $-65^{\circ}C$ to $150^{\circ}C$

Lead Temperature : 1.6mm from case (1/16 inch), soldering 10sec 260°C

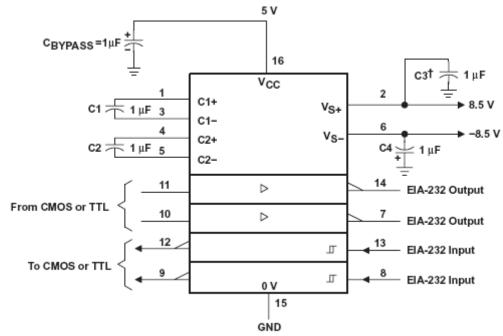
Recommended operating conditions

	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	4.5	5	5.5	V
V _{IH} High-level input voltage (T1IN,T2IN)	2			V
V _{IL} Low-level input voltage (T1IN, T2IN)			0.8	V
Receiver input voltage R1IN, R2IN			±30	V
Operating free-air temperature T_A	0		70	°C

Electrical characteristics over recommended ranges of supply voltage and operating free-air emperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP+	MAX	UNIT
VOH High-level output voltage	TIOUT, T2OUT	R _L =3 K Ω to GND	5	7		v
	R1OUT, R2OUT	I _{OH} =-1 mA	3.5			
VOL Low- level output voltage*	TIOUT, T2OUT	R _L =3 K Ω to GND		-7	-5	v
	R1OUT, R2OUT	I _{OL} =3.2 mA			0.4	
VIT+ receiver positive-going input threshold voltage	R1IN, R2IN	V _{CC} =5v T _A =25℃		1.7	2.4	v
VIT- receiver negative-going input threshold voltage	R1IN, R2IN	V _{CC} =5v T _A =25°C	0.8	1.2		v
V _{hys} Input hysteresis voltage	R1IN, R2IN	V _{cc} =5v	0.2	0.5	1	v
r _i Receive Input resistance	R1IN, R2IN	V _{cc} =5v T _A =25℃	3	5	7	kΩ
r _O Output resistance	TIOUT, T2OUT	$V_{S+}=V_{S-}=0 \ V_0=\pm 2 \ v$	300			Ω
I _{OS} Short-circuit ouput current	TIOUT, T2OUT	V _{cc} =5.5v V ₀ =0		±10		mA
I _{IS} Short-circuit iuput current	TIIN, T2IN	V _I =0			200	uA
I _{CC} Supply current		V _{CC} =5.5v All outputs open, T _A =25 °C		8	10	mA

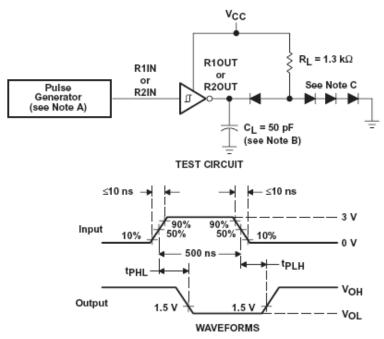
⁺ All typical values are at V_{CC} = 5 V and T_{A} = 25°C.


Switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
tPLH(R) Receiver propagation delay time,low-to high-level output	See Figure2	500	ns
tPLH(R) Receiver propagation delay time,high-to low-level output	See Figure2	500	ns
SR Driver siew rate	RL=3 kΩ to 7 kΩ	30	V/ μs
	See Figure3		
SR(tr) Driver transition region slew rate	See Figure4	3	V/ μs

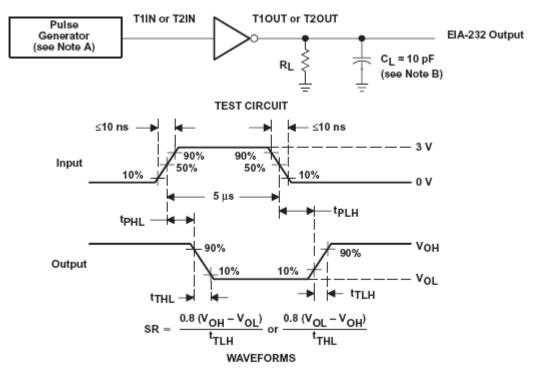
^{*} The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

^{**} Not more than one output should be shorted at a time.


Application Information

† C3 can be connected to V_{CC} or GND.

Typical Operating Circuit


Parameter Measurement Information

NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.

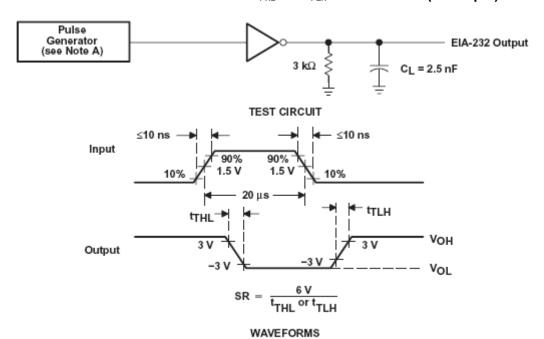

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

Figure 1. Receiver Test Circuit and Waveforms for tpHL and tpLH Measurements

NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$. B. C_L includes probe and jig capacitance.

Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-us Input)

NOTE A: The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%.

Test Circuit and Waveforms for tTHL and tTLH Measurements (20-µs Input)