VS232 ## Dual High-Performance RS232 Line Drivers/Receivers #### **General Description** The VS232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC ™ library. The Operating free-air temperature T_A of VS232 is from 0°C to 70°C. #### **General Characteristics** - Operates from a Single 5-V Power Supply - By LinBiCMOSTM technology - Two Drivers and Two Receivers - 30-V Input Levels - Low Supply Current . . . 8 mA Typical - Compatible with Maxim MAX232 - ESD Protection Exceeds 2000V #### Logic diagram #### **Pin Configuration** VS232 . . . DW or N PACKAGE ## **Applications** - Battery-Powered Systems, - Terminals, - Modems, and - Computers #### **SPECIFICATIONS** ## Absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Input supply voltage range, V_{CC} = -0.3 V to 6 V Positive output supply voltage range, V_{S+} V_{CC} – 0.3 V to 15 V Input voltage range, V_1 : Driver -0.3 V to VCC + 0.3 V Receiver $\pm 30 \text{ V}$ Output voltage range, V_{0} : T10UT, T20UT V_{S-} = 0.3 V to V_{S+} + 0.3 V R10UT, R20UT $-0.3 \text{ V to V}_{CC} + 0.3 \text{ V}$ Short-circuit duration : T10UT, T20UT Unlimited Operating free-air temperature range, T_A : VS232 0°C to 70°C Storage temperature range, T_{stg} $-65^{\circ}C$ to $150^{\circ}C$ Lead Temperature : 1.6mm from case (1/16 inch), soldering 10sec 260°C ## **Recommended operating conditions** | | MIN | NOM | MAX | UNIT | |--|-----|-----|-----|------| | V _{CC} Supply voltage | 4.5 | 5 | 5.5 | V | | V _{IH} High-level input voltage (T1IN,T2IN) | 2 | | | V | | V _{IL} Low-level input voltage (T1IN, T2IN) | | | 0.8 | V | | Receiver input voltage R1IN, R2IN | | | ±30 | V | | Operating free-air temperature T_A | 0 | | 70 | °C | # Electrical characteristics over recommended ranges of supply voltage and operating free-air emperature (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | MIN | TYP+ | MAX | UNIT | |--|--------------|--|-----|------|-----|------| | VOH High-level output voltage | TIOUT, T2OUT | R _L =3 K Ω to GND | 5 | 7 | | v | | | R1OUT, R2OUT | I _{OH} =-1 mA | 3.5 | | | | | VOL Low- level output voltage* | TIOUT, T2OUT | R _L =3 K Ω to GND | | -7 | -5 | v | | | R1OUT, R2OUT | I _{OL} =3.2 mA | | | 0.4 | | | VIT+ receiver positive-going input threshold voltage | R1IN, R2IN | V _{CC} =5v T _A =25℃ | | 1.7 | 2.4 | v | | VIT- receiver negative-going input threshold voltage | R1IN, R2IN | V _{CC} =5v T _A =25°C | 0.8 | 1.2 | | v | | V _{hys} Input hysteresis voltage | R1IN, R2IN | V _{cc} =5v | 0.2 | 0.5 | 1 | v | | r _i Receive Input resistance | R1IN, R2IN | V _{cc} =5v T _A =25℃ | 3 | 5 | 7 | kΩ | | r _O Output resistance | TIOUT, T2OUT | $V_{S+}=V_{S-}=0 \ V_0=\pm 2 \ v$ | 300 | | | Ω | | I _{OS} Short-circuit ouput current | TIOUT, T2OUT | V _{cc} =5.5v V ₀ =0 | | ±10 | | mA | | I _{IS} Short-circuit iuput current | TIIN, T2IN | V _I =0 | | | 200 | uA | | I _{CC} Supply current | | V _{CC} =5.5v All outputs
open, T _A =25 °C | | 8 | 10 | mA | ⁺ All typical values are at V_{CC} = 5 V and T_{A} = 25°C. # Switching characteristics, VCC = 5 V, TA = 25°C | PARAMETER | TEST CONDITIONS | MIN TYP MAX | UNIT | |--|-----------------|-------------|-------| | tPLH(R) Receiver propagation delay time,low-to high-level output | See Figure2 | 500 | ns | | tPLH(R) Receiver propagation delay time,high-to low-level output | See Figure2 | 500 | ns | | SR Driver siew rate | RL=3 kΩ to 7 kΩ | 30 | V/ μs | | | See Figure3 | | | | SR(tr) Driver transition region slew rate | See Figure4 | 3 | V/ μs | ^{*} The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only. ^{**} Not more than one output should be shorted at a time. ## **Application Information** † C3 can be connected to V_{CC} or GND. **Typical Operating Circuit** ## **Parameter Measurement Information** NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. - B. C_L includes probe and jig capacitance. - C. All diodes are 1N3064 or equivalent. Figure 1. Receiver Test Circuit and Waveforms for tpHL and tpLH Measurements NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$. B. C_L includes probe and jig capacitance. ## Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-us Input) NOTE A: The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%. Test Circuit and Waveforms for tTHL and tTLH Measurements (20-µs Input)