

VS485

Low-Power, Slew-RateLimited RS-485 Transceivers

General Description

VS485 is low-power transceivers for RS-485 communication. Each part contains one driver and one receiver. The driver slew rate is not limited, allowing them to transmit up to 2.5 Mbps. (Reduced slew-rate drivers minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps.) The transceivers draw between 120µg A and 50µ£gA supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. VS485 is designed for half-duplex applications.

Applicatons

Low-Power RS-485 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks

:

Pin Description

- RO Receiver Output
- RE Receiver Output Enable.
- DE Driver Output Enable.
- DI Driver Input.
- V_{cc} Positive Supply:
- B Inverting Receiver Input and Inverting Driver Output
- A Noninverting Receiver Input and Noninverting Driver Output
- GND Ground

Applications Information

The VS485 is a half-duplex low-power transceivers for RS-485. It can transmit and receive at data rates up to 2.5Mbps. Driver Enable (DE) and Receiver Enable (RE) pins are included. When disabled, the driver and receiver outputs are high impedance.

The 12k Ohms 1-unit load Input impedance of VS485 allows up to a total of 32 transceivers on a bus. VS485 sustains transient high-voltage to a range of jO15K. The ESD protection prevent the device from being damaged by static potential at the operating environment and peripherals, which is especially applicable for high speed I/O data-voice signal communications.

The VS485 provides the driver output protection. Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

Many digital encoding schemes depend on the difference between the driver and receiver propagation

delay times. For VS485, the difference in receiver delay times, | t_{PLH} - t_{PHL} |, is typically under 13ns; while the driver skew times are typically 5ns (10ns max).

The VS485 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. The line length and data rate are complied with the RS485 Standard; covers up to 4000 feet & at max 2.5M bps.

Operation mode	DATA RATE (Mbps)	SLEW-RATE LIMITED	LOW-POWER SHUTDOWN	RECEIVER/DRIVER ENABLE	QUIESCENT CURRENT (µA)	NUMBER OF TRANSMITTERS ON BUS	
HALF DUPLEX	2.5	No	No	Yes	300	32	

TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.

Typical Half-Duplex RS-485 Network

Pin Desc	ription	
01	RO	Receiver Output: If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low.
02	RE	Receiver Output Enable. RO is enabled when RE is low; RO is high impedance when RE is high.
03	DE	Driver Output Enable. The driver outputs are enabled by bringing DE high. They are high impedance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if RE is low.
04	DI	Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
05	GND	Ground
06	А	Non-inverting Receiver Input and Non-inverting Driver Output
07	В	Inverting Receiver Input and Inverting Driver Output
08	V _{cc}	Positive Supply: 4.75V \leq VCC \leq 5.25V

Function Tables

Table 1. Transmitting

	INPUTS	OUTPUTS		
RE	DE	DI	А	В
х	1	1	0	1
х	1	0	1	0
0	0	Х	High-Z	High-Z

Table 2. Receiving

	INPUTS	OUTPUTS	
RE	DE	A-B	RO
0	0	> +0.2V	1
0	0	< -0.2V	0
0	0	Inputs	1

X = Don't care, High-Z = High impedance

X = Don't care, High-Z = High impedance ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Vcc)	12V
Control Input Voltage (RE, DE)	0.5V to (VCC + 0.5V)
Driver Input Voltage (DI)	0.5V to (Vcc + 0.5V)
Driver Output Voltage (Á, B)	8V to +12.5V
Receiver Input Voltage (A, B)	8V to +12.5V
Receiver Output Voltage (RÓ)	0.5V to (VCC +0.5V)
Continuous Power Dissipation (TA = +70¢XC	
8-Pin Plastic DIP (derate 9.09mW/¢XC above +70¢XC;	727mW
8-Pin SO (derate 5.88mW/¢XC above +70¢XC);	471mW
Operating Temperature Ranges	
Commercial Grade;;	0¢XC to +70
Industrial Grade	40¢XC to +85U
Storage Temperature Range	65¢XC to +160
Lead Temperature (soldering, 10sec)	+300¢X

Stresses beyond those listed under "§ Absolute Maximum Rating", "may cause permanent damage to the davice

DC ELECTRICAL CHARACTERISTICS

(VCC = 5V jÓ5%, A = T_{MIN} to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	V _{OD1}					5	V
Differential Driver Output (with load)	V _{OD2}	R = 27 Ω , Figure 4		2			V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔV_{OD}	R = 27 Ω , Figure 4				0.2	V
Driver Common-Mode Output Voltage	Voc	R = 27 Ω , Figure 4				3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	∆Vod	$R=27~\Omega$, Figure 4				0.2	V
Input High Voltage	V _{IH}	DE, DI, RE		2.0			V
Input Low Voltage	VIL	DE, DI, RE				0.8	V
Input Current	I _{IN1}	DE, DI, RE				iÓ	μg
Input Current (A, B)		DE = 0V	V _{IN} = 12V			1.0	mA
	I _{IN2}	$V_{cc} = 0V$ or 5.25V	V _{IN} = -7V			-0.8	mA
Receiver Differential Threshold Voltage	V _{TH}	-7V ≦ V _{CM} ≦ 12V	·	-0.2		0.2	V
Receiver Input Hysteresis	∆Итн	V _{CM} = 0V			70		mV
Receiver Output High Voltage	V _{он}	I _O = -4mA, V _{ID} = 200mV		3.5			V
Receiver Output Low Voltage	V _{OL}	I _O = -4mA, V _{ID} = 200mV				0.4	V
Three-State (high impedance) Output Current at Receiver	I _{OZR}	$0.4V \leq V_0 \leq 2.4V$				iÓ	μg
Receiver Input Resistance	R _{IN}	$-7V \leq V_{CM} \leq 12V$		12			kΩ
No-Load Supply Current			$DE = V_{cc}$		500	900	μg
(Note 3)	I _{CC}	$RE = 0V \text{ or } V_{CC}$	DE = 0V		300	500	μg
Driver Short-Circuit Current, $V_o = High$	I _{OSD1}	-7V ≦ V ₀ ≦ 12V (Note 4)		35		250	mA
Driver Short-Circuit Current, $V_o = Low$	I _{OSD2}	-7V ≦ V ₀ ≦ 12V (Note 4)		35		250	mA
Receiver Short-Circuit Current	I _{OSR}	$0V \leq V_0 \leq VCC$		7		95	mA

Figure 4. Driver DC Test Load

SWITCHING CHARACTERISTICS

(VCC = 5V $\frac{1000}{1000}$, A = TMIN to TMAX, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Priver Input to Output	t _{PLH}	Figures 6 and 8, $R_{DIFF} = 54 \Omega$,	10	30	60	ns
	t _{PHL}	$C_{L1} = C_{L2} = 100 pF$	10	30	60	115
Driver Output Skew to Output	t _{skew}	Figures 6 and 8, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF		5	10	ns
Driver Rise or Fall Time	t _R , t _F	Figures 6 and 8, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF	3	15	40	ns
Driver Enable to Output High	t _{zH}	Figures 7 and 9, C_L = 100pF, S_2 closed		40	70	ns
Driver Enable to Output Low	t _{ZL}	Figures 7 and 9, C_L = 100pF, S_1 closed		40	70	ns
Driver Disable Time from Low	t _{LZ}	Figures 7 and 9, C_L = 15pF, S_1 closed		40	70	ns
Driver Disable Time from High	t _{HZ}	Figures 7 and 9, $C_L = 15 pF$, $S_2 closed$		40	70	ns
Receiver Input to Output	t _{PLH}	Figures 6 and 10, $R_{DIFF} = 54 \Omega$,	20	90	200	ne
	t _{PHL}	$C_{L1} = C_{L2} = 100 pF$	40 70 40 70 40 70 20 90 13	115		
I t _{PLH} - t _{PHL} I Differential Receiver Skew	t _{SKD}	Figures 6 and 10, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF		13		ns
Receiver Enable to Output Low	t _{zL}	Figures 5 and 11, C_{RL} = 15pF, S ₁ closed		20	50	ns
Receiver Enable to Output High	t _{zH}	Figures 5 and 11, C_{RL} = 15pF, S_2 closed		20	50	ns
Receiver Disable Time from Low	t _{LZ}	Figures 5 and 11, C_{RL} = 15pF, S ₁ closed		20	50	ns
Receiver Disable Time from High	t _{HZ}	Figures 5 and 11, C_{RL} = 15pF, S_2 closed		20	50	ns
Maximum Data Rate	f _{MAX}	t_{PLH} , t_{PHL} < 50% of data period			2.5	Mbps

NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICS

- Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
- **Note 2:** All typical specifications are given for VCC = 5V and TA = +25¢XC **Note 3:** Supply current specification is valid for loaded transmitters when DE = 0V. **Note 4:** Applies to peak current.

Figure 5. Receiver Timing Test Load

Figure 7. Driver Timing Test Load

Figure 9. Driver Enable and Disable Times

Figure 6. Driver/Receiver Timing Test Circuit

Figure 8. Driver Propagation Delays

Figure 10. Receiver Propagation Delays

Figure 11. Receiver Enable and Disable Times

Package PDIP, .300"

·	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α		0.180		4.572	
A1	0.015		0.38		
A2	0.125	0.175	3.18	4.45	
A3	0.055	0.080	1.40	2.03	
В	0.015	0.022	0.381	0.56	
B1	0.045	0.065	1.14	1.65	
С	0.008	0.014	0.2	0.355	
D1	0.005	0.080	0.13	2.03	
E	0.300	0.325	7.62	8.26	
E1	0.240	0.310	6.10	7.87	
e	0.100 BSC.		2.54 BSC		
eА	0.300 BSC		7.62 BSC		
eВ	0.4100 BSC		10.16BSC		
L	0.115	0.150	2.91	3.81	

Package SOIC, .150"

	INC	CHES	MILLIN	NETERS
DIM	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
е	0.050	BSC	1.27 E	BSC
E	0.150	0.157	3.80	4.00
Н	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27