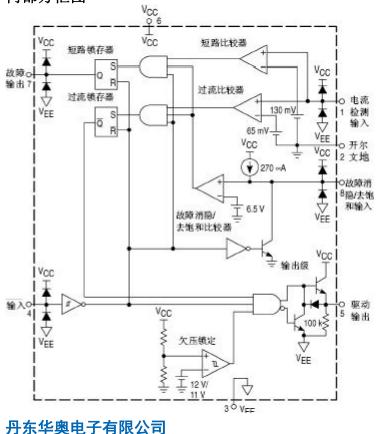


单 IGBT 栅极驱动器

简介

LD33153 (替代 MC33153) 是专为 IGBT 驱动器设计的,用于包括交流感应电机控制、无刷直流电机控制和不间断电源 (UPS) 的大功率应用。虽然为驱动分立式和模块式 IGBT 而设计,该器件也可以为驱动功率 MOSFET 和双极型晶体管提供低成本的解决方案。器件的保护功能包括去饱和或过流检测选择和欠压检测。该器件提供双列直插和表面贴装封装。


特点

- 大电流输出端口: 1A 拉电流/2A 灌电流
- 对常规型和感应型 IGBT 都有保护电路
- 可预设故障消隐时间
- 过流和短路保护
- 为 IGBT 优化的欠压锁定
- 负栅驱动能力
- 是驱动大功率 MOSFET 和双极型晶体管的低成本解决方案

系列信息

封装	说明		
SOP8	管装,编带,无铅		
DIP8	管装, 无铅		

内部方框图

管脚图

极限参数

	参数	缩写	数值	单位	
电源电压	Vcc 至 Vee	V _{CC} -V _{EE}	20		
电极电压	开尔文地至 VEE	KGND-VEEN	20		
逻辑输入		$V_{ m IN}$	Vee-0.3 至 Vcc	V	
电流检测输入		Vs	-0.3 至 Vcc		
消隐/去饱和输入		V _{BD}	-0.3 至 Vcc		
	拉电流		1.0		
栅极驱动输入	灌电流	Io	2.0	A	
	二极管箝位电流		1.0		
1.1.11 ÷ 4.0.11	拉电流	т	25	mA	
故障输出	灌电流	IFO	10		
功耗和热特性		·			
GODO + LY+	最大功耗@Ta=50°C	PD	0.56	W	
SOP8 封装	热阻,结至环境	R e JA	180	°C/W	
DIDO ++\	最大功耗@Ta=50°C	PD	1.0	W	
DIP8 封装	热阻,结至环境	R в ЈА	100	°C/W	
工作结温		Tı	150		
工作环境温度范围		Та	-40~+105	$^{\circ}$	
储存温度范围		Tstg	-65~+150		

电参数 (Vcc=15V, Vee=0V, 开尔文地接至 Vee, Ta=25℃, 除非另外说明)

	参数	缩写	最小值	典型值	最大值	单位
逻辑输入						
输入门限电压	高电平状态 (逻辑 1)	V_{IH}		2.7	3.2	V
	低电平状态 (逻辑 0)	VIL	1.2	2.3		
输入电流	高电平状态 (V _H =3.0V)	Іін		130	500	μА
	低电平状态 (VIL =1.2V)	IIL		50	100	
驱动输出						
输出电压	低电平状态 (Isink =1.0A)	Vol		2.0	2.5	V
	高电平状态(Isource =500mA)	Voh	12.0	13.9		
输出下拉电阻		Rpd		100	200	kΩ

丹东华奥电子有限公司

http://www.huaaoe.com

QJ/DHA 01.36-2015

电参数(续) (Vcc=15V, Vee=0V, 开尔文地接至 Vee 地, Ta=25℃, 除非另外说明)

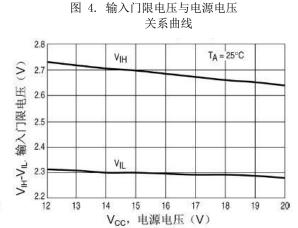

参数		缩写	最小值	典型值	最大值	单位	
故障输出							
输出电压	低电平状态 (Isink =5.0A)	V_{FL}		0.2	1.0	V	
	高电平状态(Isource =20mA)	V_{FH}	12.0	13.3			
开关特性							
传输延迟(50%	6输入至 50%输出,CL=1.0nF)						
逻辑输入至驱动	为输出上升	TPLH(in/out)		80	300		
逻辑输入至驱动输出下降		TPHL(in/out)		120	300	ne	
驱动输出上升时	†问(10%至 90%,CL=1. 0nF)	tr		17	55	ns	
驱动输出下降时	†间(90%至 10%,CL=1. 0nF)	$\mathfrak{t}_{\mathrm{f}}$		17	55		
传输延迟	电流检测输入至驱动输出	$t_{p}\left(oc\right)$		0.3	1.0	μs	
14 制 進 心	故障消隐/去饱和输入至驱动输出	$t_{p}\;(\text{FLT})$		0.3	1.0		
UVLO	UVLO						
起动电压	起动电压		11.3	12	12.6	V	
禁用电压		$V_{\rm CC\ dis}$	10.4	11	11.7		
比较器							
过流门限电压 (Vpin8>7.0V)		Vsoc	50	65	80	mV	
短路门限电压(V _{pin8} >7.0V)	Vssc	100	130	160	111 V	
故障销隐/去饱和	门限(V _{pin1} >100mV)	$V_{\text{th }(FLT)}$	6.0	6.5	7.0	V	
电流检测输入电流(Vsi=0V)		Isı		-1.4	-10	μΑ	
故障销隐/去饱和输入							
电流源(Vpin8=0V, Vpin4=0V)		I_{chg}	-200	-270	-300	μΑ	
放电电流(Vpin8=15V, Vpin4=5.0V)		I_{dschg}	1.0	2.5		mA	
器件整体							
电源电流	待机(Vpin4=Vcc, 输出开路)	Icc		7.2	14	mA	
	工作(CL=1.0nF, f=20kHz)			7.9	20		

图 1. 输入电流与输入电压 关系曲线 1.5 输入电流 (mA) 1.0 0.5 VCC = 15 V T_A = 25°C _<u>:</u> 2.0 4.0 6.0 8.0 10 12 14 16 V_{in+}. 输入电压(V)

图 2. 输出电压与输入电压 关系曲线 16 V_{CC} = 15 V T_A = 25°C 12 输出电压(V) 10 8.0 6.0 4.0 °, 2.0 0 3.0 0 1.0 2.0 4.0 5.0 V_{in},输入电压(V)

图 3. 输入门限电压与温度 关系曲线 3.2 V_{CC} = 15 V 3.0 VIH-VIL,输入门限电压 2.8 VIH 2.6 2.4 2.0 -60 -40 -20 100 120 140 T_A, 环境温度 (°C)

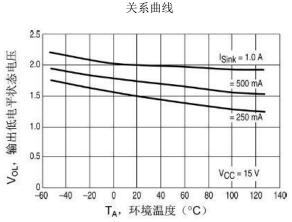


图 5. 驱动输出低电平电压与温度

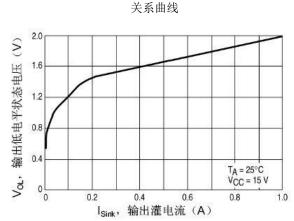


图 6. 驱动输出低电平电压与灌电流

丹东华奥电子有限公司

http://www.huaaoe.com

 Automobile Semiconductor
 电话: +86-0415-6161121
 201506

 # 14 F (2015)
 # 14 F (2015)

图 7. 驱动输出高电平电压与温度线 图 8. 驱动输出高电平电压与拉电流 关系曲线 关系曲线 Vori, 驱动输出高电平状态电压(V) 驱动输出高电平状态电压(V) 15.0 V_{CC} = 15 V T_A = 25°C 13.9 14.6 13.8 14.2 13.7 13.8 V_{CC} = 15 V 13.6 13.4 ISource = 500 mA 13.5 _ -60 V_{OH}; 13.0 60 80 -40 -20 20 40 100 120 0.1 0.2 0.4 0.5 T_A, 环境温度(°C) I_{Source},输出拉电流(A)

关系曲线 16 V_{CC} = 15 V V_{Pin 4} = 0 V V_{Pin 8} > 7.0 V T_A = 25°C 14 S 12 驱动输出电压 10 8.0 6.0 4.0 ^ô 2.0 0 L 50 60 55 65 电流检测输入电压 (mV)

图 9. 驱动输出电压与电流检测输入电压

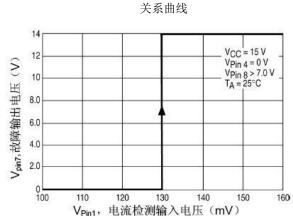
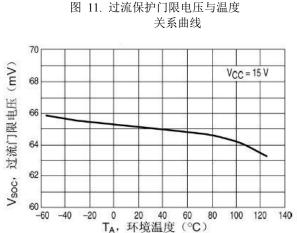



图 10. 故障输出电压与电流检测输入电压

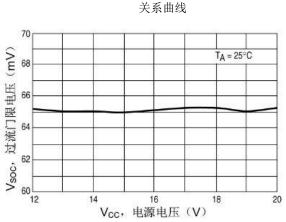


图 12. 过流保护门限电压与电源电压

丹东华奥电子有限公司

http://www.huaaoe.com

图 13. 短路比较器门限电压与温度 关系曲线

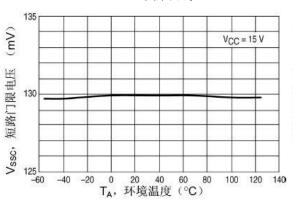


图 14. 短路比较器门限电压与电源电压 关系曲线

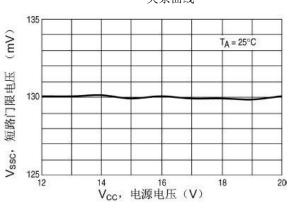


图 15. 电流检测输入电流与电压 关系曲线

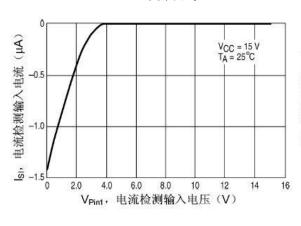


图 16. 驱动输出电压与故障消隐/去饱和输入电压 关系曲线

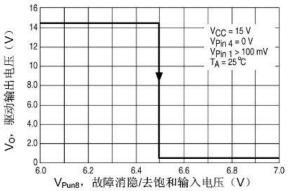


图 17.故障消隐/去饱和比较器门限电压与温度 关系曲线

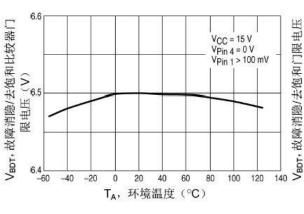
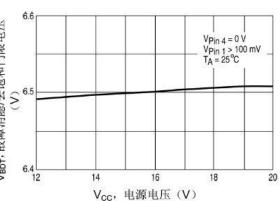



图 18.故障消隐/去饱和比较器门限电压与电源电压 关系曲线

丹东华奥电子有限公司

http://www.huaaoe.com

图 19. 故障消隐/去饱和电流源与温度 关系曲线

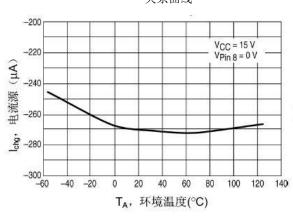


图 20. 故障消隐/去饱和电流源与电源电压 关系曲线

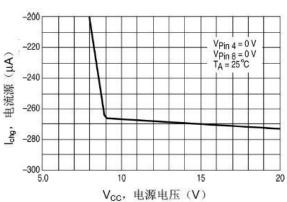


图 21. 故障消隐/去饱和电流源与输入电压 关系曲线

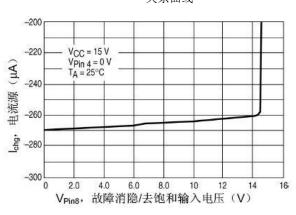


图 22. 故障消隐/去饱和放电电流与输入电压 关系曲线

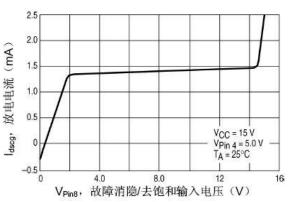


图 23. 故障输出低电平电压与灌电流 关系曲线

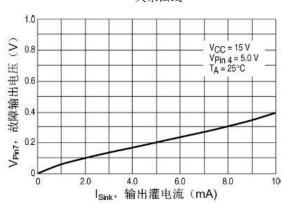
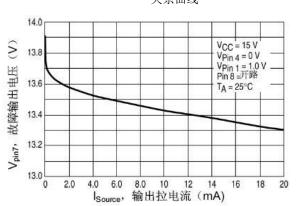



图 24. 故障输出高电平电压与拉电流 关系曲线

丹东华奥电子有限公司

http://www.huaaoe.com

图 25. 驱动输出电压与电源电压 关系曲线

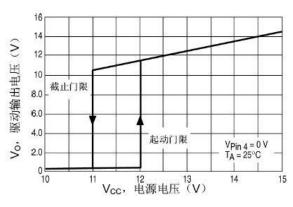


图 26. UVLO 与温度 关系曲线

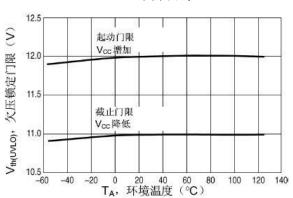


图 27. 电源电流与电源电压 关系曲线

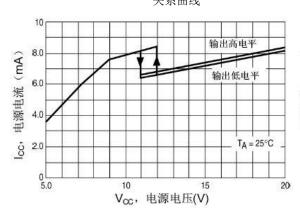


图 28. 电源电流与温度

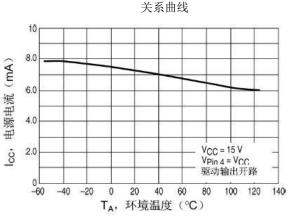
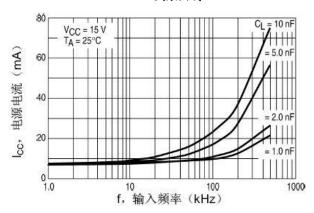



图 29. 电源电流与输入频率 关系曲线

丹东华奥电子有限公司

http://www.huaaoe.com

功能描述

栅极驱动开关时间控制 (管脚 Pin5)

栅极驱动的 IGBT 设计特点主要是优化开关功能特性。在桥式直流电机控制中的脉宽调制(PWM)晶体管的开关功能特性是非常重要的。在选择这类 IGBT 的栅极驱动电路的应用元件时,应当优先考虑开关时间和截止态阻抗。图 30 中所示的是只用一个电阻控制导通和关断。然而,这个电阻值要在导通冲击和关断泄流之间进行折衷选择。通常,采用这种单一电阻的方式只适合于低频率的 PWM。图 31 所示是优化的栅极驱动输出级,该电路分别对导通和关断进行了优化。在电机控制电路中,导通电阻 Ron 用于控制 IGBT 的导通速度。该电阻设定导通的 di/dt,以控制关断续流二极管 Doff 的时间。IGBT 和续流二极管的相互作用决定了导通 dv/dt。过量的导通 dv/dt 是半桥型电路中共同存在的问题。关断电阻 Roff 控制关断速度,并确保 IGBT 在电压转换时保持截止。关断要求必须是低开关损耗,这是由于 IGBT 的少数载流子复合有固定的最小损耗,一个缓慢的栅极驱动将控制关断损耗。对于快速 IGBT 这是非常正确的,过快速度的关断 IGBT 将有可能导致大的过冲电压。通常,关断电阻要小于导通电阻。

LD33153 包括一个双极型图腾柱输出极,峰值电流为 1.0A 拉电流和 2.0A 灌电流。此输出端口还包含一个下拉电阻,以确保 LD33153 的 Vcc 电压不足时关断 IGBT。

IGBT 的控制是用一个 PWM 调制的正反向半桥电路,这样至少一个器件总是截止的。当 IGBT 关断时,它将承受由其它器件引起的电压突变,这时相对的晶体管如果导通,就特别容易出问题。

当下部晶体管导通时,连接在上部晶体管发射极和下部晶体管集电极的二极管同时导通,这决定了这个方向的导通 dv/dt。为消除击穿电流,必须向处于关断态的 IGBT 提供一个低灌电流阻抗。在大多数的应用电路中,在电压变换时既要保证 IGBT 关断,而又不会产生过快关断速度的情况下,尽可能选择小的关断电阻。

一个负偏置电压可用于驱动 IGBT 至截止态。这实际是双极达林顿驱动的用法,通常对于 IGBT 是不需要的。但是,负偏压可减少击穿的可能性。 LD33153 对 VEE 地和开尔文地有分离的管脚。 这就允许使用+15/-5.0V 电源工作。

图 30. 只用一个栅极电阻

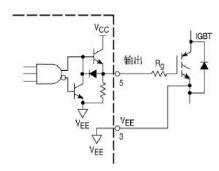
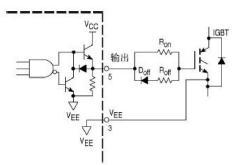



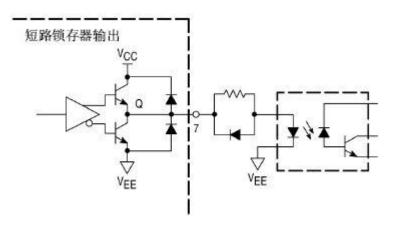
图 31. 分别使用导通和关断电阻

http://www.huaaoe.com

丹东华奥电子有限公司

两个光隔离器接口

光隔离器可用于电平转换和隔离交流电压。


光隔离器输入(管脚 Pin4)

LD33153 有一个光隔离器输入端口。当使用一个具有极高 dv/dt 性能的光隔离器,例如惠普 HCPL4053。输出端口的 IGBT 栅极导通电阻应该足够大,以确保不超过光隔离器的 dv/dt。与大多数光隔离器一样,HCPL4053 具有一个低电平有效的集电极开路输出。这样,当 LED 点亮时,输出为低电平。输入管脚需要使用一个上拉电阻与光隔离器直接连接,实现正、反相变换。此输入也可直接连接到 5.0V 的 CMOS 逻辑器件或微控制器上。见图 34。

光隔离器故障输出(管脚 Pin7)

LD33153 有一个高平有效的故障输出。该端口可方便地与光隔离器连接。正确报告所有错误是相当重要的,但不传输虚假信号也是同样重要。必须再次使用高 dv/dt 性能的光隔离器。通过预设一个高电平有效输出电阻提供 10~20mA 的 LED 导通驱动电流,并在关断时用一个小信号二极管提供了低阻抗通路。这样构成一个优良的 LED 驱动器。见图 32。

图 32. 光隔离器故障输出

欠压闭锁

IGBT 的栅极需要达到 15V 的额定导通电压,栅极电压不足时需要保护 IGBT。栅极电压低于 13V 时,IGBT 导通电压急剧上升,特别是在大电流情况下,在低于 10V 时,IGBT 工作在线性区域并且快速过热。许多 PWM 电机驱动采用自举电路来提升栅极驱动。UVLO 在自举电容放电时为 IGBT 提供保护。

LD33153 通常在大约 12V 时起动。UVLO 电路有约 1.0V 的滞后,并且在电源电压降至约 11V 以下时禁用输出。

丹东华奥电子有限公司

保护电路

去饱和保护(管脚 Pin8)

双极型功率电路普遍采用"去饱和检测"。通过监控集电极电压,并在此电压超过预设关断晶体管。双极型晶体管的导通电流取决于基极驱动电流,在基极过驱动时晶体管进入饱和区。当集电极电流超过限制值时,晶体管需要去饱和。晶体管工作在线性区域内时,导通的最大电流与基极直流电流是正比例增益(hFE)的函数关系。

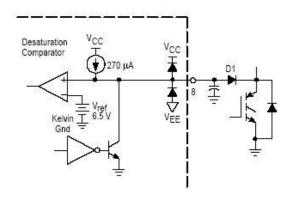
IGBT 的输出特性与双极型器件相似,只是,器件的最大输出电流取决与栅极电压而不是电流。 IGBT 在短路情况下比双极型器件具有更大的跨导和更高的电流。 所以,用 IGBT 控制电机时,如 果发生短路,需要进行较低电流和承受较长的短路时间的设计。

见图 33。检测去饱和的最佳方法是采用一个高压箝位二极管和一个比较器。LD33153 有一个故障消隐/去饱和比较器端口,可在器件未完全饱和时检测集电极电压并提供输出指示。二极管 D1 是外部的高压二级管,用于比较功率器件的额定电压。当 IGBT "导通"和饱和时,D1 下拉故障消隐/去饱和端口上的输入电压。当 IGBT "截止"和去饱和时,电流源将上拉输入端口,并关断比较器。比较器门限为 6.5V,允许的最大导通电压约为 5.8V。

当栅极输入为高电平,并且 VcE 大于最大允许 VcE (sat) 时,故障发生。去饱和比较器的输出和栅极输入信号相与后,馈入短路和过流锁存器。当检测到故障时,过流锁存器将在周期的剩余时间内关断 IGBT。当栅极输入再次为高电平时,两个锁存器均复位。参考电压被连接至开尔文地而不是 VEE,以使门限与栅极偏压无关。注意,为正确操作去饱和比较器和故障输出,电流检测输入端的偏置必须高于过流和短路比较器门限。这可通过将管脚 1 接至 Vcc 上实现。

LD33153 还可预设故障消隐时间。在导通时,IGBT 必须关断相应的续流二极管。集电极电压将保持高电平直至二极管被关断。一旦二极管已关断,电压将快速降至器件的 VcE (sat)。导通之后通常在集电极上出现由 IGBT 的 Coss 电容和线圈寄生电感所产生的大振荡。来自去饱和比较器的故障信号必须被足够消隐,以使二极管被关断而消除振荡。

当栅极输入为低电平时,消隐功能用一个 NPN 晶体管去箝位比较器的输入。当输入转换为高电平时,将关断箝位晶体管,以允许内部电流源给消隐电容充电。从内部 NPN 晶体管关断,到消隐电容充电至比较器触发电平所需的时间,就是消隐时间。如果在 IGBT 导通和饱和后发生短路,电流源为消隐电容充电,从 IGBT 的 VcE (sat) 电平至比较器触发电平所需的时间,就是延迟时间。可以通过将管脚 8 悬空,来禁用故障消隐。



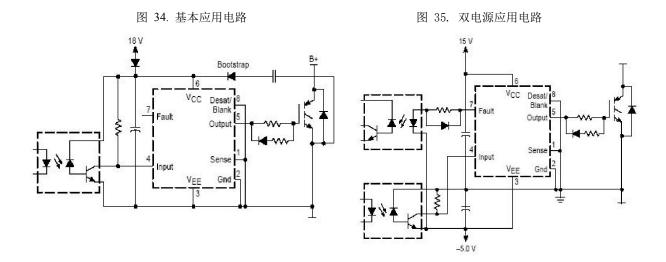
IGBT 电流检测保护(管脚 Pin1)

保护 IGBT 的另一种方法是监测发射极电流,可以使用电流取样电阻或内部集成有电流检测电路的 IGBT (即 Sense IGBT)。用管脚 Pin1 可以很方便的使用没有任何内部短路保护能力的高增益 IGBT。在大多数情况下,IGBT 的电流检测和 MOSFET 的电流检测的工作原理是相同的,使用极低的过流检测电压仍然是最基本的工作方式。Sense IGBT 是通过检测相对于集电极电流的有线性变化的通道来实现的。因为 IGBT 的导通电阻增量极低,Sense IGBT 的运作很象低导通电阻的MOSFET 电流检测。能准确关断 Sense IGBT 的输出电压很低,通常小于 100mV。

Sense IGBT 需要使用故障消隐,以防止在导通期间产生错误触发,也需要在栅极为低电平时忽略检测信号。这是因为,由于集电极的耦合电容,在导通和关断期间,通常会产生大的瞬态耦合电压输出。不使用 Sense IGBT 时,可采用小阻值的取样电阻(5.0 至 50mΩ),检测发射极电流。当输出是实际短路时,电感将非常小。由于消隐电路仅提供了固定的最小导通时间,在短路条件下的峰值电流可能非常高。通过有更高触发电压的次级比较器,实现短路识别功能。短路信号被锁存并出现在故障输出端。当检测到短路时,IGBT 被关断几毫秒,以使其在再次接通前进行冷却。电流检测电路与去饱和电路非常相似。LD33153 的这两个端口的电路组合,可以为 IGBT 和 Sense IGBT 都提供短路保护。

图 33. 去饱和检测

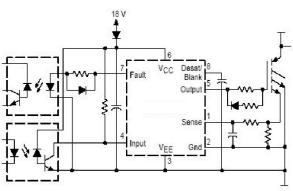
应用信息


图 34 是基本的 IGBT 驱动器应用。当用光隔离器驱动时,需要一个输入上拉电阻。此电阻值的设置应使输出晶体管偏置在需要的电流上。在靠近 IC 的地方应置一个去耦合电容以减小开关噪声。

自举二极管可用于浮动电源。如果不需要保护特性,那么故障消隐/去饱和和电流检测输入应当接到开尔文地(管脚 2)。当全部使用是单电源时,开尔文地和 VEE 管脚应当连在一起。建议使用不同阻值的栅极电阻,以优化驱动器的导通和关断。

图 35 是双电源应用。开尔文地应当接至 IGBT 的发射极。如果不使用保护特性,故障消隐/ 去饱和端和电流检测输入端均应接地。输入光隔器要参考连接到 VEE。

丹东华奥电子有限公司



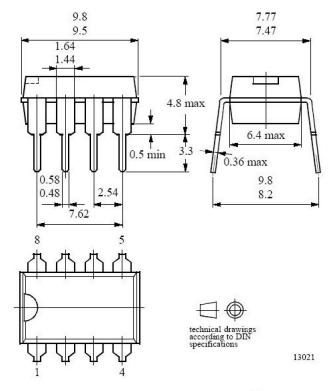
如果需要使用去饱和保护功能, 高压二极管应当连接至故障消隐/去饱和管脚。消隐电容应当从 去饱和管脚连接至 Vee 管脚。如果使用双电源,消隐电容应当连接至开尔文地。因为两个比较器输 出是相与关系,所以电流检测输入端口应置为高电平。虽然 IGBT 集电极上的反相电压被续流二极 管箝位至发射极,但通常要考虑到器件封装自身内部产生的电感。与二极管串联的小电阻可用于在 产生反相瞬时电压时保护 IC。

当使用 Sense IGBT 或检测取样电阻时,检测电压被输入至电流检测输入端。检测开关电压参 考与开尔文地的管脚。检测电压很小,典型值约为 65mV,且对噪声非常敏感。因此,检测线路和 地线应分开布线。RC 滤波器用于滤除任何高频噪声。消隐电容从消隐管脚连接至 VEE。如果开路, 消隐管脚上的寄生电容也会产生极小的消隐。当需要电流检测时,消隐管脚不应接地,这样会禁用 电流检测。消隐管脚不应置为高电平,那将短路箝位晶体管。

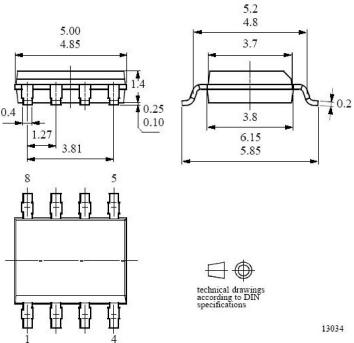
图 37. Sense IGBT 应用电路 图 36. 去饱和应用电路 Desat/ Sense Gnd

丹东华奥电子有限公司

http://www.huaaoe.com


Automobile Semiconductor 电话: +86-0415-6161121 201506

封装信息


DIP8

单位: mm

SOP8

单位: mm

丹东华奥电子有限公司