

Closed Loop Hall AC/DC Current Sensor CYHCS-D5

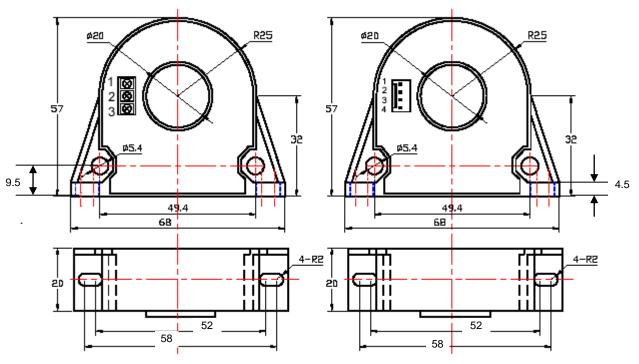
This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

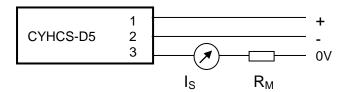
Product Characteristics		Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	СҮНСЗ-D5	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers 5 3 1 (Batter / Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-D5S/M100A	CYHCS-D5S/M200A	CYHCS-D5S/M300A	
Nominal current	100	200	300	А
Measuring range	300 (±18V, 20 Ω)	600(±18V, 30 Ω)	900 (±18V, 20 Ω)	А
Turns ratio	1:2000	1:2000	1:2000 or 1:3000	
	with±12V DC			
Measuring resistance	@±100Amax 80(max)	@±200Amax 80(max)	@±300Amax 76(max)	Ω
	@±200Amax 25 (max)	@±500Amax 20(max)	@±600Amax 22(max)	Ω
	with±15V DC			
	@±100Amax 110(max)	@±200Amax 120(max)	@±300Amax 100(max)	Ω
	@±200Amax 40(max)	@±500Amax 30(max)	@±600Amax 36(max)	Ω
Nominal analogue output current	50±0.5%	100±0.5%	150 ±0.5%or 100±0.5%	mA
Secondary internal resistance	25	21	32	Ω
Supply voltage	±12 ~ ±18			V
Current consumption	±15VDC, 20 + output current		mA	
Galvanic isolation	50HZ, 1min, 6		KV	

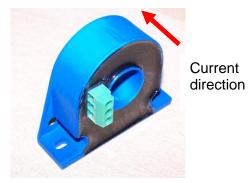
ACCURACY DYNAMIC PERFORMANCE


Zero offset current	±0.2	mA
Thermal drift of offset current	-25°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC100	kHz
di/dt following accuracy	>200	A/µs


GENERAL DATA

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C

Dimensions (mm)


Screw Connector (P/N: CYHCS-D5Sxxxx) DG300-5.0 Screw terminal block

Pin & Terminal Arrangement

1(+):	+15V
2(-):	-15V
3(M):	Output
4:	NC

Molex Connector (P/N: CYCS-D5Mxxxx) Molex 22011042, 5045-04AG, 5051-04

Operating instructions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 120 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.