INTEGRATED CIRCUITS # DATA SHEET ## NE/SA/SE532 LM258/358/A/2904 Low power dual operational amplifiers Product data Supersedes data of 2002 Jan 22 ## Low power dual operational amplifiers NE/SA/SE532/ LM258/358/A/2904 #### DESCRIPTION The 532/358/LM2904 consists of two independent, high gain, internally frequency-compensated operational amplifiers internally frequency-compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages. Operation from dual power supplies is also possible, and the low power supply current drain is independent of the magnitude of the power supply voltage. #### **UNIQUE FEATURES** In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. The unity gain cross frequency is temperature-compensated. The input bias current is also temperature-compensated. #### **FEATURES** - Internally frequency-compensated for unity gain - Large DC voltage gain: 100 dB - Wide bandwidth (unity gain): 1 MHz (temperature-compensated) - Wide power supply range single supply: 3 V_{DC} to 30 V_{DC}, or dual supplies: ±1.5 V_{DC} to ±15 V_{DC} - Very low supply current drain (400 µA)—essentially independent of supply voltage (1 mW/op amp at +5 V_{DC}) - Low input biasing current: 45 nA_{DC} temperature-compensated - Low input offset voltage: 2 mV_{DC}, and offset current: 5nA_{DC} - Differential input voltage range equal to the power supply voltage - Large output voltage: 0 V_{DC} to V+ 1.5 V_{DC} swing #### PIN CONFIGURATION Figure 1. Pin configuration. #### **EQUIVALENT CIRCUIT** Figure 2. Equivalent circuit. ## Low power dual operational amplifiers NE/SA/SE532/ LM258/358/A/2904 #### ORDERING INFORMATION | DESCRIPTION | TEMPERATURE RANGE | ORDER CODE | DWG # | |---|-------------------|------------|----------| | 8-Pin Plastic Small Outline (SO) Package | 0 °C to +70 °C | NE532D | SOT96-1 | | 8-Pin Plastic Dual In-Line Package (DIP) | 0 °C to +70 °C | NE532N | SOT97-1 | | 8-Pin Plastic Small Outline (SO) Package | −40 °C to +85 °C | SA532D | SOT96-1 | | 8-Pin Plastic Small Outline (SO) Package | -40 °C to +125 °C | LM2904D | SOT96-1 | | 8-Pin Plastic Thin Shrink Small Outline Package (TSSOP) | -40 °C to +125 °C | LM2904DP | SOT505-1 | | 8-Pin Plastic Dual In-Line Package (DIP) | -40 °C to +125 °C | LM2904N | SOT97-1 | | 8-Pin Plastic Small Outline (SO) Package | −25 °C to +125 °C | LM258D | SOT96-1 | | 8-Pin Plastic Dual In-Line Package (DIP) | −25 °C to +125 °C | LM258N | SOT97-1 | | 8-Pin Plastic Small Outline (SO) Package | 0 °C to +70 °C | LM358D | SOT96-1 | | 8-Pin Plastic Thin Shrink Small Outline Package (TSSOP) | 0 °C to +70 °C | LM358DP | SOT505-1 | | 8-Pin Plastic Dual In-Line Package (DIP) | 0 °C to +70 °C | LM358N | SOT97-1 | | 8-Pin Plastic Small Outline (SO) Package | 0 °C to +70 °C | LM358AD | SOT96-1 | | 8-Pin Plastic Dual In-Line Package (DIP) | 0 °C to +70 °C | LM358AN | SOT97-1 | | 8-Pin Plastic Dual In-Line Package (DIP) | –55 °C to +125 °C | SE532N | SOT97-1 | #### **ABSOLUTE MAXIMUM RATINGS** | SYMBOL | PARAMETER | RATING | UNIT | |------------------|---|--|----------------------| | Vs | Supply voltage, V+ | 32 or ±16 | V _{DC} | | | Differential input voltage | 32 | V _{DC} | | V _{IN} | Input voltage | -0.3 to +32 | V _{DC} | | P _D | Maximum power dissipation T _{amb} = 25 °C (Still air) ¹ N package D package DP package | 1160
780
714 | mW
mW
mW | | | Output short-circuit to GND ²
V+ < 15 V _{DC} and T _{amb} = 25 °C | Continuous | | | T _{amb} | Operating ambient temperature range NE532/LM358/LM358A LM258 LM2904 SA532 SE532 | 0 to +70
-25 to +85
-40 to +125
-40 to +85
-55 to +125 | ဝဲ
ဝဲ ဝဲ ဝဲ
ဝဲ | | T _{stg} | Storage temperature range | -65 to +150 | °C | | T _{sld} | Lead soldering temperature (10 sec max) | 230 | °C | NOTE: 1. Derate above 25 °C, at the following rates: N package at 9.3 mW/°C D package at 6.2 mW/°C DP package at 5.72 mW/°C 2. Short-circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15 V_{DC}, continuous short-circuits can exceed the power dissination ratings and cause eventual destruction. power dissipation ratings and cause eventual destruction. ## Low power dual operational amplifiers #### DC ELECTRICAL CHARACTERISTICS T_{amb} = 25 °C: V+ = +5 V. unless otherwise specified. | SYMBOL | PARAMETER | TEST CONDITIONS | SE | 532, LM | 1258 | | NE/SA53
1358/LM | | UNIT | |--------------------|--|--|-----|---------|--------|-----|--------------------|--------|-------| | | | | Min | Тур | Max | Min | Тур | Max | | | , | 0" , , 1 | R _S = 0 Ω | | ±2 | ±5 | | ±2 | ±7 | mV | | Vos | Offset voltage ¹ | $R_S = 0 \Omega$; over temp. | | | ±7 | | | ±9 | mV | | Vos | Drift | $R_S = 0 \Omega$; over temp. | | 7 | | | 7 | | μV/°(| | | 0" | $I_{IN(+)} - I_{IN(-)}$ | | ±3 | ±30 | | ±5 | ±50 | nA | | los | Offset current | Over temp. | | | ±100 | | | ±150 | nA | | los | Drift | Over temp. | | 10 | | | 10 | | pA/°(| | | lament accommand? | I _{IN(+)} or I _{IN(-)} | | 45 | 150 | | 45 | 250 | nA | | BIAS | Input current ² | I _{IN(+)} or I _{IN(-)} ; Over temp. | | 40 | 300 | | 40 | 500 | nA | | I _B | Drift | Over temp. | | 50 | | | 50 | | pA/°(| | \/ | Common-mode voltage | V+ = 30 V | 0 | | V+-1.5 | 0 | | V+-1.5 | V | | V_{CM} | range ³ | V+ = 30 V; Over temp. | 0 | | V+-2.0 | 0 | | V+-2.0 | V | | CMRR | Common-mode rejection ratio | V+ = 30 V | 70 | 85 | | 65 | 70 | | dB | | . , | | $R_L \ge 2 \text{ k}\Omega$; V+ = 30 V; over temp. | 26 | | | 26 | | | V | | V _{OH} | Output voltage swing | $R_L \ge 10 \text{ k}\Omega$; V+ = 30 V; over temp. | 27 | 28 | | 27 | 28 | | V | | V _{OL} | Output voltage swing | $R_L \ge 10 \text{ k}\Omega$; over temp. | | 5 | 20 | | 5 | 20 | mV | | | | R _L = ∞; V+ = 30 V | | 0.5 | 1.0 | | 0.5 | 1.0 | mA | | I _{CC} | Supply current | R _L =∞ on all amplifiers; V+ = 30 V; over temp. | | 0.6 | 1.2 | | 0.6 | 1.2 | mA | | | | $R_L \ge 2 \text{ k}\Omega; \text{ V}_{OUT} \pm 10 \text{ V}$ | 50 | 100 | | 25 | 100 | | V/m\ | | A _{VOL} | Large-signal voltage gain | V+=15V (for large V _O swing);
over temp. | 25 | | | 15 | | | V/m\ | | PSRR | Supply voltage rejection ratio | R _S = 0 Ω | 65 | 100 | | 65 | 100 | | dB | | | Amplifier-to-amplifier coupling ⁴ | f = 1 kHz to 20 kHz (input referred) | | -120 | | | -120 | | dB | | | 0.45.4.5 | $V_{IN+} = +1 V_{DC}; V_{IN-} = 0 V_{DC};$
$V_{IN+} = 15 V_{DC}$ | 20 | 40 | | 20 | 40 | | mA | | | Output current (Source) | $V_{IN+} = +1 V_{DC}; V_{IN-} = 0 V_{DC};$
V+ = 15 V _{DC} ; over temp. | 10 | 20 | | 10 | 20 | | mA | | I _{OUT} | | $V_{IN-} = +1 V_{DC}; V_{IN+} = 0 V_{DC};$
$V_{IN-} = +1 V_{DC}; V_{IN-} = 0 V_{DC};$ | 10 | 20 | | 10 | 20 | | mA | | | Output current (Sink) | $V_{IN-} = +1 V_{DC}; V_{IN+} = 0 V_{DC};$
V+ = 15 V _{DC} ; over temp. | 5 | 8 | | 5 | 8 | | mA | | | $V_{IN+} = 0 \text{ V; } V_{IN-} = +1 \text{ V}_{DC};$
$V_{O} = 200 \text{ mV}$ | | 12 | 50 | | 12 | 50 | | μА | | l _{SC} | Short circuit current ⁵ | | | 40 | 60 | | 40 | 60 | mA | | | Differential input voltage ⁶ | | | | V+ | | | V+ | V | | GBW | Unity gain bandwidth | T _{amb} = 25 °C | | 1 | | | 1 | | MHz | | SR | Slew rate | T _{amb} = 25 °C | | 0.3 | | | 0.3 | | V/µs | | V _{NOISE} | Input noise voltage T _{amb} = 25 °C; f = 1 kHz | | | 40 | | | 40 | | nV/√ŀ | (Notes on next page). ## Low power dual operational amplifiers #### DC ELECTRICAL CHARACTERISTICS (continued) $T_{amb} = 25 \, ^{\circ}C$; V+ = +5 V; unless otherwise specified. | SYMBOL | DADAMETED | TEST CONDITIONS | | LM358A | · | UNIT | |--------------------|--|--|-----|--------|--------|--------| | SYMBOL | PARAMETER | TEST CONDITIONS | Min | Тур | Max | UNII | | \ / | Office to college and 1 | $R_S = 0 \Omega$ | | ±2 | ±3 | mV | | V _{OS} | Offset voltage ¹ | $R_S = 0 \Omega$; over temp. | | | ±5 | mV | | Vos | Drift | $R_S = 0 \Omega$; over temp. | | 7 | 20 | μV/°C | | | Offset current | $I_{IN(+)} - I_{IN(-)}$ | | 5 | ±30 | nA | | los | Onset current | Over temp. | | | ±75 | nA | | I _{OS} | Drift | Over temp. | | 10 | 300 | pA/°C | | | Input current ² | $I_{IN(+)}$ or $I_{IN(-)}$ | | 45 | 100 | nA | | IBIAS | Imput current- | $I_{IN(+)}$ or $I_{IN(-)}$; Over temp. | | 40 | 200 | nA | | I _B | Drift | Over temp. | | 50 | | pA/°C | | V | Common-mode voltage range ³ | V+ = 30 V | 0 | | V+-1.5 | V | | V_{CM} | Common-mode voltage range | V+ = 30 V; Over temp. | 0 | | V+-2.0 | V | | CMRR | Common-mode rejection ratio | V+ = 30 V | 65 | 85 | | dB | | \ / | Cutaut valta aa aviis a | $R_L \ge 2 \text{ k}\Omega$; V+ = 30 V; over temp. | 26 | | | V | | V _{OH} | Output voltage swing | $R_L \ge 10 \text{ k}\Omega; \text{ V+} = 30 \text{ V; over temp.}$ | 27 | 28 | | ٧ | | V _{OL} | Output voltage swing | tage swing $R_L \ge 10 \text{ k}\Omega$; over temp. | | 5 | 20 | mV | | | Oursels summers | $R_L = \infty, V + = 30 V$ | | 0.5 | 1.0 | mA | | Icc | Supply current | $R_L = \infty$ on all amplifiers; V+ = 30 V; over temp. | | 0.6 | 1.2 | mA | | Δ. | Large simply offers as asia | $R_L \ge 2 \text{ k}\Omega; \text{ V}_{OUT} \pm 10 \text{ V}$ | 25 | 100 | | V/mV | | A _{VOL} | Large-signal voltage gain | $V+ = 15 V$ (for large V_O swing); over temp. | 15 | | | V/mV | | PSRR | Supply voltage rejection ratio | $R_S = 0 \Omega$ | 65 | 100 | | dB | | | Amplifier-to-amplifier coupling ⁴ | f=1kHz to 20kHz (input referred) | | -120 | | dB | | | | $V_{IN+} = +1 V_{DC}; V_{IN-} = 0 V_{DC}; V+ = 15 V_{DC}$ | 20 | 40 | | mA | | | Output current (Source) | $V_{IN+} = +1 \ V_{DC}; \ V_{IN-} = 0 \ V_{DC}; \ V+ = 15 \ V_{DC};$ over temp. | 10 | 20 | | mA | | I _{OUT} | | $V_{IN-} = +1 V_{DC}, V_{IN+} = 0 V_{DC}, V_{+} = 15 V_{DC}$ | 10 | 20 | | mA | | | Output current (Sink) | $V_{IN-} = +1 \ V_{DC}; \ V_{IN+} = 0 \ V_{DC}; V_{+} = 15 \ V_{DC};$ over temp. | 5 | 8 | | mA | | | | $V_{IN+} = 0 \text{ V}; V_{IN-} = +1 \text{ V}_{DC}; V_{O} = 200 \text{ mV}$ | 12 | 50 | | μΑ | | I _{SC} | Short circuit current ⁵ | | | 40 | 60 | mA | | | Differential input voltage ⁶ | | | | V+ | V | | GBW | Unity gain bandwidth | T _{amb} = 25 °C | | 1 | 1 | MHz | | SR | Slew rate | T _{amb} = 25 °C | | 0.3 | | V/μs | | V _{NOISE} | Input noise voltage | T _{amb} = 25 °C; f = 1 kHz | | 40 | | nV/√Hz | #### NOTES: - 1. $V_O \approx$ 1.4 V, $R_S =$ 0 Ω with V+ from 5 V to 30 V; and over the full input common-mode range (0 V to V+ -1.5 V). - 2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. - 3. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+ -1.5 V, but either or both inputs can go to +32 V without damage. - 4. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance coupling increases at higher frequencies. 5. Short-circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately - Short-circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15 V_{DC}, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. - The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+ –1.5 V, but either or both inputs can go to +32 V_{DC} without damage. #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 3. Typical performance characteristics. ## Low power dual operational amplifiers #### TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Figure 4. Typical performance characteristics (continued). #### TYPICAL APPLICATIONS Figure 5. Typical applications. ## Low power dual operational amplifiers #### SO8: plastic small outline package; 8 leads; body width 3.9 mm SOT96-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | Α1 | A ₂ | A ₃ | bр | С | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|-------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 5.0
4.8 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.010
0.004 | 0.057
0.049 | 0.01 | | 0.0100
0.0075 | 0.20
0.19 | 0.16
0.15 | 0.050 | 0.244
0.228 | 0.041 | 0.039
0.016 | 0.028
0.024 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | | |---------|--------|--------|-------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | 1550E DATE | | | SOT96-1 | 076E03 | MS-012 | | | 97-05-22
99-12-27 | | ## Low power dual operational amplifiers #### DIP8: plastic dual in-line package; 8 leads (300 mil) SOT97-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁
min. | A ₂
max. | b | b ₁ | b ₂ | c | D (1) | E ⁽¹⁾ | е | e ₁ | L | ME | Мн | w | Z ⁽¹⁾
max. | |--------|-----------|------------------------|------------------------|----------------|----------------|----------------|----------------|--------------|------------------|------|----------------|--------------|--------------|--------------|-------|--------------------------| | mm | 4.2 | 0.51 | 3.2 | 1.73
1.14 | 0.53
0.38 | 1.07
0.89 | 0.36
0.23 | 9.8
9.2 | 6.48
6.20 | 2.54 | 7.62 | 3.60
3.05 | 8.25
7.80 | 10.0
8.3 | 0.254 | 1.15 | | inches | 0.17 | 0.020 | 0.13 | 0.068
0.045 | 0.021
0.015 | 0.042
0.035 | 0.014
0.009 | 0.39
0.36 | 0.26
0.24 | 0.10 | 0.30 | 0.14
0.12 | 0.32
0.31 | 0.39
0.33 | 0.01 | 0.045 | #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | |---------|--------|--------|----------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | ISSUE DATE | | SOT97-1 | 050G01 | MO-001 | SC-504-8 | | 95-02-04
99-12-27 | ## Low power dual operational amplifiers NE/SA/SE532/ LM258/358/A/2904 TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm SOT505-1 #### DIMENSIONS (mm are the original dimensions) | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | c | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|--------------|------|--------------|-----|-----|-----|------------------|----------| | mm | 1.10 | 0.15
0.05 | 0.95
0.80 | 0.25 | 0.45
0.25 | 0.28
0.15 | 3.10
2.90 | 3.10
2.90 | 0.65 | 5.10
4.70 | 0.94 | 0.70
0.40 | 0.1 | 0.1 | 0.1 | 0.70
0.35 | 6°
0° | #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFEF | EUROPEAN | ISSUE DATE | | |----------|-----|------------|----------|------------|------------| | VERSION | IEC | JEDEC EIAJ | | PROJECTION | ISSUE DATE | | SOT505-1 | | | | | 99-04-09 | Low power dual operational amplifiers NE/SA/SE532/ LM258/358/A/2904 NOTES ## Low power dual operational amplifiers NE/SA/SE532/ LM258/358/A/2904 #### Data sheet status | Data sheet status ^[1] | Product
status ^[2] | Definitions | |----------------------------------|----------------------------------|--| | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. | | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. | | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. | ^[1] Please consult the most recently issued data sheet before initiating or completing a design. #### **Definitions** **Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. **Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. #### **Disclaimers** **Life support** — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. #### **Contact information** For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com © Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A. Date of release: 08-02 Document order number: 9397 750 10187 Let's make things better. Philips Semiconductors ^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.