A guide to creating with the Onion OmegaZ2

Volume 1

’, D
Tl

Project Book

Onion ONion.io

Contents

1 Onion Omega2 Project Book Vol. 1 5
Introduction to the Omega2 7
Getting Started L e 23
The Command Line e 23
File Editing on the Omega e 28
Intro to Python e 29
Where Can I Learn More? e 32
Where to Get More Onion Products e 32
Reporting Issues e 33

2 Starter Projects 35
Morse Code onan LED e 36
LED Traffic Light o o 41

3 OLED Expansion Projects 47
Ambient Temperature Monitor L 49
QR Code Generator 62
News Flash Headlines e 66
Stock Ticker e e e 73
Twitter Feed Display o o o o 78

4 ToT Projects 85
Weather Station e e 87
Time-Lapse Camera 0 e e e e e 99
Alarms based on an Online Calendar 107
Thermal Printer e 114
Thermal Printer - A Compact Version i 121
Smart Plant - Measuring Plant Data o 133
Smart Plant - Visualizing Plant Data 147
Smart Plant - Twitter Alerts 172
Smart Plant - Automatic Plant Watering 198
Smart Plant - A Single Power Supply 226
Temperature-Based Smart Fan 236
IoT Lock e 247
IoT Lock - Control with a Tweet 256

5 Audio Projects 267
AirPlay Speaker 268

Bluetooth Speaker 277

4 CONTENTS

6 Wireless Projects 287
Mobile WiFi Network Scanner 288
OctoPrint 3D Printing Server 297
Mobile Network File Server 304
Omega WiFi Router e 309
Omega WiFi Range Extender 316

Omega WiFi Ethernet Bridge 320

1 Onion Omega2 Project Book Vol. 1

& Onion

PROJECT

BOOK

Welcome to the Volume 1 of the Omega2 Project Book!

6 Chapter 1. Onion Omega2 Project Book Vol. 1

Not sure what to do with your Omega? Take a look at some of our project tutorials, you’ll learn how to
use the Omega AND make a whole bunch of ToT gadgets!

The Projects

This Project Book Volume consists of 22 projects that are outlined through the course of 28 tutorials.
The projects are split up according to five categories:

1. Starter Projects
e Two projects to get you comfortable working with the Omega
2. OLED Expansion Projects
e Projects that use the OLED Expansion to communicate various information to users
3. IoT Projects
e True Internet of Things projects that use connectivity to bring intelligence to everyday objects
or existing technology
4. Audio Projects
o Take advantage of the fact that the Omega is well equipped to handle sound input and output
since it runs a Linux Operating System
5. Wireless Projects
o Use the Omega’s extensive networking capabilities to make a variety of computer networking
tools

1.0 Introduction to the Omega?2

Contributors

The contributors for Project Book Vol. 1:

e Lazar Demin
Gabriel Ongpauco
e Zheng Han

o James Liu

Introduction to the Omega2

Wondering what exactly the Omega2 is all about? You’ve come to the right place!

8 Chapter 1. Onion Omega2 Project Book Vol. 1

What is an IoT Computer?

An IoT computer is a Linux computer designed specifically for use in building connected hardware ap-
plications meant for IoT. As a refresher, IoT (which stands for the Internet of Things) is the next big
technological wave. It involves providing intelligence and internet connectivity to physical devices of all
sorts, this includes home appliances, cars, buildings, really anything. The newly smart devices will be
able to collect and exchange data as well as receive instructions. All with the goal of having all of our
devices work together to improve our lives, whether through automating your sprinkler system to keep
your lawn or garden green without any intervention, having your coffee machine brew automatically and
sounding your alarm early when there’s heavy traffic, or improving the efficiency of your manufacturing
and shipping business.

So then, what is an IoT computer used for, exactly? The Omega2 IoT computer is meant to be a
development platform for all things IoT, whether you want to experiment, build yourself some sweet
gadgets for fun, or prototype and create an IoT product.

What makes the Omega an IoT computer:

e Small form factor
o Power efficiency
e Processing, networking, and encryption capabilities
o Flexibility that comes from running a Linux OS
— Support for many programming languages and many simultaneous processes

Comparisons

If you’re familiar with existing development boards, the Omega2 can be categorized as something in
between an Arduino and a Raspberry Pi.

When compared to an Arduino Uno, the Omega has several advantages since it is a computer while the
Uno is a microcontroller:

o It is powered by a full processor, not a microcontroller
o Runs a full Linux (soft) real-time operating system
— Supports many programming languages
— Has a filesystem with storage
o Networking (wireless and wired) support built-in, can be programmed

Some things the Arduino Uno can do that the Omega cannot:

e Support for analog inputs and outputs
e Provide cycle accurate signals for controlling very low level hardware

The Omega is more similar to the Raspberry Pi, since they’re both computers. Being an IoT computer,
the Omega does some things differently from the Raspberry Pi single-board computer:

e Comes with on-board storage and the OS preloaded - getting it up and running for the first time
takes about two minutes

o Built-in WiFi radio and capabilities (not all Raspberry Pi models come with this on-board)

e Lower power consumption

Since the Omega is not a general purpose computer, there are a few things the Raspberry Pi family can
do that the Omega cannot:

e Output HD video

1.0 Introduction to the Omega?2 9

— The Omega’s IoT-centric purpose means it can drive smaller screens, but not a computer
monitor or TV
e Run a graphical Linux desktop
— The Omega is not a general purpose computer; it is meant for use-cases that prioritize connec-
tivity and lower power consumption
e Generally, the Raspberry Pi’s SoCs have more processing power
— The Omega prioritizes power efficiency over processing performance

So, the Omega is more powerful and flexible than the Arduino Uno, and it provides internet & network
connectivity right out of the box. However, it is not as powerful as the Raspberry Pi and cannot output
video to T'Vs or monitors, since it is geared towards power efficiency and out-of-the-box usage with the
built-in storage, preloaded OS, and WiFi networking. Best of all, the Omega is a very affordable module,
with prices that are lower than or very closely rival its neighbors in the development board space.

Note that we at Onion use and love both the Arduino Uno (as well as other Arduino products) and all
Raspberry Pi models. We wanted to provide a development platform specifically geared towards IoT, and
that is how the Omega came into being.

History

Back in late 2014, we were trying to make a thermal printer automatically print our To Do lists from
Evernote. We struggled quite a bit during this endeavour and realized the need for an IoT computer. So we
got to work and in the spring of 2015, Onion launched the original Omega on Kickstarter. The response
was great! About 4,400 makers, coders, and tinkerers backed the campaign. We spent a considerable
amount of time in Shenzhen, China and made the Omega and it’s assorted Docks and Expansions into
a reality, with a variety of speed-bumps along the way. This process provided many great lessons about
product design, manufacturing, and delivery.

After listening to feedback from the community and taking a hard look at the state of IoT, Onion decided
to launch the Omega2 in 2016. The Omega2 would have two models with different specs, be even lower
cost than the original, and be fully FCC certified! The Omega2 Kickstarter was successful beyond belief,
with over 16 thousand backers pledging to the campaign!

Hardware

The Omega2 IoT Computer:

https://www.kickstarter.com/projects/onion/onion-omega-invention-platform-for-the-internet-of
https://www.kickstarter.com/projects/onion/omega2-5-iot-computer-with-wi-fi-powered-by-linux

10 Chapter 1. Onion Omega2 Project Book Vol. 1

OMEGA H(TEADER B
UFL GONNEGTOR > et MOuUNTING HOLE

oL X-X-X-X-X-X-X-X-X-X-X-X-)

©
O] @Yonion Omega2

A3

https://onion.io
40-A3-6B-C0-27-11 €
OMEGA LED ~)
0000000000000000
____._.’—Y—_,/
Y
OMEGA HEADER A
The Specs:
Omega?2 Omega2+
Processor 580MHz MIPS CPU 580MHz MIPS CPU
Memory 64MB Memory 128MB Memory
Storage 16MB Storage 32MB Storage
USB USB 2.0 USB 2.0
MicroSD Slot No Yes
WiFi adapter b/g/n Wi-Fi b/g/n Wi-Fi
Operating Voltage 3.3V 3.3V
SoC

The Omega2 uses the Mediatek MT7688AN System-on-a-Chip (SoC). The processor is MIPS 24KEc,
little-endian, 32-bit RISC core that operates at 580 MHz. For the truly curious, it has a 64 KB I-Cache
and 32 KB D-Cache.

While this family of SoCs has traditionally been used in routers, this is very much a real CPU (and not a
microcontroller) like you would find in a smartphone or laptop. It’s just a different architecture (MIPS as

opposed to ARM in smartphones or x86 in laptops & desktops) and operates at a lower frequency: about
a quarter of the speed of a modern laptop CPU.

The lower clock speed and the MIPS architecture of the SoC lend to the Omega’s low power consumption

and low heat generation. This makes it ideal for use in the space and energy constrained use cases common
for IoT applications.

SoC

SoC MediaTek MT7688AN
Architecture MIPS 24KEc (RISC, 32-bit)

1.0 Introduction to the Omega?2 11

SoC
Endianness Little
Clock Speed 580 MHz
I-Cache 64 KB
D-Cache 32 KB

Memory

The Omega2 comes with 128 MB of memory and the Omega2+ with 256 MB. Both models use DDR2
DRAM (Dynamic Random Access Memory).

Storage

While technically still memory, we refer to the Omega’s onboard SPI flash memory as storage since it
provides persistent, non-volatile memory that will not be destroyed when the Omega is powered off. The
flash storage is where the Operating System (OS), programs, and all other files are stored. This flash
storage is to the Omega what a hard-drive is to a laptop computer.

The Omega2 comes with 16 MB flash storage while the Omega2+ has 32 MB.

Micro-SD Card Slot

The Omega2+ additionally has a Micro-SD card slot on the underside that can be used to extend the
storage available to the system. It is also possible to boot the Omega from the SD card.

Networking

The Omega2 has support for both wireless and wired networking.

WiFi
The Omega supports 2.4 GHz IEEE 802.11 b/g/n WiFi with a 150 Mbps PHY data rate. The antenna
is 1'T1R, meaning that it is used for both transmitting and receiving by virtue of time-multiplexing. By

default, the Omega uses the on-board ceramic chip antenna. However, there is also a u.FL connector
onboard for those who wish to use external antennas.

The Omega’s WiFi interface supports hosting its own WiFi Access Point, connecting to existing WiFi
networks, or both simultaneously.

Ethernet

The Omega supports 10M/100M wired ethernet network connectivity as well when used with a Dock and
an Ethernet Expansion.

GPIOs

The Omega2 has twelve General Purpose Input/Output (GPIO) pins that can be controlled by the user.

12

Chapter 1. Onion Omega2 Project Book Vol. 1

GPIO Mapping

On the Omega, the GPIOs are laid out in two banks:

. Omega 2

Pinout Diagram

GND

Electrical Characteristics

00000000 CCOHOED

¢O-NO ‘[°PoN
ze8swQ uoo () ®
000000000000000D

BUIYD Ul dpEAl ZV¥DINO-dAVZ :al D24

uoluQ Aq pausisag

LL-L2-00-99-EV-0F

oruoiuo//:sdny

A
M
3
X

Ground
Power
GPIO
USB
' Reset
8 sn
Ethernet
@ 2c
® s
[Serial

{v1.1) December, 2016
Onion Carporafion

hitps.Jonien.jo

Before interfacing with external electronics, the electrical characteristics of the Omega should be noted.
The most important part is that the Omega’s GPIOs are 3.3V and are not 5V tolerant. Interfacing with
5V devices directly may damage your Omega’s GPIOs!

Digital Signal Voltage Level

The Omega2’s GPIOs are not 5V input tolerant!

See the table below for the GPIOs’ operating voltages:

Parameter

Minimum (V)

Maximum (V)

Input HIGH 2.0
Input LOW
Output HIGH 2.4
Output LOW —

-0.3

3.6
0.8
3.3
0.4

1.0 Introduction to the Omega?2 13

Warning: Connecting a signal to an input pin below the minimum LOW or above the maximum
HIGH voltages may damage your Omega!

Standard 5V logic devices typically accept 3.3V as a logical HIGH, however, they output logical HIGH in
the range of 4.4V to 5V. This means that the Omega can output to a 5V logical device, but input from
the 5V logic device would damage the GPIO input circuitry.

Current Limits

The Omega’s GPIOs have current limitations: a GPIO can source or sink up to 8mA. This is not a high
current, so try to limit the current demands on the GPIOs to avoid damaging your device. Use external
circuits controlled by the Omega’s GPIOs if your project has higher current demands.

USB

The Omega supports the USB 2.0 protocol as a host. Use USB devices to extend the functionality of your
system. Most Docks provide a USB Type-A socket for easier connectivity.

Serial Protocols

The Omega supports several useful serial communication protocols.

I2C

Support is included for the ubiquitous Inter-Integrated Circuit interface, also known as I12C. 12C is a
master-slave bus protocol that allows a master device to interact with and control multiple slave devices.
It is fast and reliable and only uses two data lines: SCL for the bus clock and SDA for the serial data.

Signal Purpose Omega GPIO

SCL Clock Lane 4
SDA Data Lane 5

The Omega acts as an I12C bus master, issuing commands and reading responses from other devices and
chips. For example, the Omega controls the Servo (PWM), Relay, and OLED Expansions using 12C.

See our Documentatation on I12C for more details.

UART

The Universal Asynchronous Receiver Transmitter (UART) protocol is supported as well. A UART is
meant for direct communication between two devices, with no concept of a master or a slave. It uses two
data lines: one for transmitting and one for receiving. Note that the transmitting (TX) pin of one device,
needs to be connected to the receiving (RX) pin of the other device, and vice versa.

The Omega has two separate UARTS, meaning it can be connected via UART to two separate devices. By
default, UARTO is configured to provide a serial interface to the Omega’s command line. On the Expansion
and Mini Docks, UARTO is connected to a USB-to-Serial chip that allows access to the command line
through the Micro-USB connection. The other one, UART1 is exposed on the Expansion Header, and
is free to be used to communicate with other devices. On the Arduino Dock 2, it is hard-wired to the
ATmega microcontroller for direct and reliable communication.

https://docs.onion.io/omega2-docs/communicating-with-i2c-devices.html

14

Chapter 1. Onion Omega2 Project Book Vol. 1

Signal Omega2 GPIO

UARTO0 TX 12
UARTO0 RX 13
UART1 TX 45
UART1 RX 46

See our Documentatation on UART for more details.

SPI

Finally, the Omega also supports the Serial Peripheral Interface (SPI) protocol. SPI is a four-wire, master-
slave, synchronous communication protocol that can run at high speeds and transfer lots of data. It is
generally used to connect microprocessors or microcontrollers to sensors, memory, and other peripherals.
The SPI Master can have multiple connected SPI slaves, but each requires it’s own Slave Select (also
known as Chip Select) signal that indicates that specific devices is the current subject of communication.

The Omega uses SPI to communicate with the on-board flash memory that is used as storage for the
Operating System and all of the files.

Signal Description Omega GPIO

SCK System Clock 7

MOSI Master Out, Slave In - Data sent from the Master to the Slave 8

MISO Master In, Slave Out - Data sent from the Slave to the Master 9

CS0 Chip Select 0 Internally connected to flash storage
CS1 Chip Select 1 6

See our Documentatation on SPI for more details.

Software

The Omega2 runs an Onion-customized version of the LEDE (Linux Embedded Development Environ-
ment) operating system, a distribution based on OpenWRT.

The Omega’s OS comes equipped as a web server by default, so that other devices on the local network
can interact with the Omega through a browser.

Supported Programming Languages

o C& C++
e Python

e NodeJS

o Rust

e Ruby

« PHP

e Perl

e GoLang

https://docs.onion.io/omega2-docs/uart1.html
https://docs.onion.io/omega2-docs/communicating-with-spi-devices.html
https://lede-project.org/
https://lede-project.org/

1.0 Introduction to the Omega?2 15

Installing Software

Since the processor’s architecture is MIPS, all applications need to be compiled specifically for the MIPS
architecture. So you unfortunately can’t just download regular Linux installation packages and run them
on the Omega. Luckily, LEDE has it’s own package management system in the opkg program. The opkg
utility allows users to access online software package repositories and install the packages. By default, it
only looks at Onion’s package repository, but the main LEDE package repositories can be enabled easily.

Docks

To make the Omega incredibly easy to use, it can be plugged directly into any of a number of Docks
provided by Onion. All Docks can be powered with a regular Micro-USB cable, they contain a regulator
circuit to safely provide 3.3V to power the Omega safely. Each Dock adds unique functionality to the
Omega, including exposing the Omega’s GPIOs, supporting the plug and play Omega Expansions, provide
USB connectivty, among other things.

Expansion Dock

The Expansion Dock can be considered the main Dock for the Omega. As the name implies, it supports
Omega Expansions since it has the Expansion Header that exposes the Omega’s GPIOs.

It’s meant to be the main platform for the development phase of your project or product. It features
an on-board USB-to-Serial chip that allows serial connectivity to the Omega’s command line terminal
through the Micro-USB port. The serial terminal can be used to access the bootloader in case the Omega’s

https://onion.io/store/expansion-dock/

16 Chapter 1. Onion Omega2 Project Book Vol. 1

OS is corrupted or cannot successfully boot. It also provides a USB Type-A plug for connecting USB
devices to the Omega.

See the Expansion Dock hardware overview and usage guide for more details.

Arduino Dock

The Arduino Dock 2 features the ATmega328P microcontroller (the very same one used on the Arduino
Uno) that can be programmed by the Omega to work in tandem as a co-processor. The Omega and
ATmega328P can communicate using [2C and a serial UART connection.

The Arduino Dock 2 exposes the microcontroller pins in the same header design as the Arduino Uno, so
it can be used with any existing Arduino Shields. It also features the Expansion Header that exposes the
Omega’s GPIOs, allowing the use of all Omega Expansions. Also present is a USB Type-A socket for
connecting USB devices to the Omega.

See the Arduino Dock 2 hardware overview and usage guide for more details.

Power Dock

The Power Dock offers the mobility that comes with powering the Omega with any 3.7V LiPo (Lithium
ion Polymer) battery. When plugged into power with a Micro-USB cable, it will charge up the battery.
If no battery is present, the Omega can be powered with just the Micro-USB, similar to the Expansion
Dock.

https://docs.onion.io/omega2-docs/expansion-dock.html
https://docs.onion.io/omega2-docs/expansion-dock.html#using-the-dock
https://onion.io/store/arduino-dock-r2/
https://docs.onion.io/omega2-docs/arduino-dock-2.html
https://docs.onion.io/omega2-docs/arduino-dock-2.html#using-the-dock-1

1.0 Introduction to the Omega?2 17

Use the Power Dock to deploy your developed projects and/or provide a battery back-up to maintain
power to mission-critical Omega systems. Also featured is the Expansion header, exposing the Omega’s
GPIOs and providing support for all Omega expansions. Like the other Docks, it has a USB Type-A
socket for connecting USB devices to the Omega.

See the Power Dock hardware overview and usage guide for more details.

Mini Dock

As the name implies, the Mini Dock is the smallest form-factor Dock for the Omega. It does not provide
direct access to the GPIOs, but exposes the USB port, making it ideal for networking or USB-based
use-case.

See the Mini Dock hardware overview for more details.

Breadboard Dock

The Breadboard Dock rather unsurprisingly allows the user to plug their Omega directly into a breadboard.
The Omega can be powered with a Micro-USB 5V supply since the breadboard has a voltage regulator,
or it can be provided with 3.3V directly from the breadboard.

https://docs.onion.io/omega2-docs/power-dock.html
https://docs.onion.io/omega2-docs/power-dock.html#using-the-power-dock
https://onion.io/store/mini-dock/
https://docs.onion.io/omega2-docs/mini-dock.html
https://onion.io/store/breadboard-dock/

18 Chapter 1. Onion Omega2 Project Book Vol. 1

Lo -
e

CeOCCCCCeCeee
SLYLOOBOEYOY DWW

re
» £
-
9
-
-,
~
<
<
¥
<
[¥]
]
]
(V]
[¥]

L
R T

-
o

I B
N
R R
PEE R EEEEEEE SR
e R
PEE R R
PSR R N B -

o
!

The Omega’s pins are mapped 1-to-1 to the breadboard headers, so it’s about as close as you can get to
plugging the Omega directly into a breadboard.

See the Breadboard Dock hardware overview for more details.

Expansions

The Expansions are the key to the Omega’s modularity and flexibility since they add specific functionality
to the system. As long as the Dock used with the Omega has an Expansion Header, it can support plug
and play Omega Expansions.

https://docs.onion.io/omega2-docs/breadboard-dock.html

1.0 Introduction to the Omega?2 19

Docks that Support Expansions

Expansion Dock
Arduino Dock 2
Power Dock

Servo (PWM) Expansion

Generate up to 16 different, free-running Pulse Width Modulated (PWM) signals with the Servo (PWM)
Expansion. The PWM signals are driven by the Dock’s 5V power supply by default, it also supports
using an external supply (up to 12V DC) to drive the PWM signals.

Use it to control Servos, LEDs, transistors, anything that supports PWM. The on-board oscillator sup-
ports generating PWM signals at frequencies in the range of 24 Hz to 1526 Hz. The default frequency is
50 Hz for compatibility with most servos. Note that when using multiple servos under a load, use of an
external power supply is recommended.

For more details see:

o PWM Expansion hardware overview

e Guide to using the PWM Expansion

Relay Expansion

Use two electromechanical relays to switch external, independent, and potentially much higher-voltage
circuits with the Relay Expansion.

https://onion.io/store/servo-pwm-expansion/
https://onion.io/store/servo-pwm-expansion/
https://docs.onion.io/omega2-docs/pwm-expansion.html
https://docs.onion.io/omega2-docs/using-pwm-expansion.html
https://onion.io/store/relay-expansion/

20 Chapter 1. Onion Omega2 Project Book Vol. 1

The relays can switch up to 60W, and are rated for a maximum current of 2A and a maximum voltage
of 220V DC or 250V AC. It includes an 12C address switch, allowing the use of up to eight (8) Relay
Expansions with a single Omega, giving the user control of up to 16 external circuits.

For more details see:

o Relay Expansion hardware overview

e Guide to using the Relay Expansion

OLED Expansion

The OLED Expansion is a low-power 0.96” monocrome OLED screen with a 128x64 resolution. Use it to
display text and images.

https://docs.onion.io/omega2-docs/relay-expansion.html
https://docs.onion.io/omega2-docs/using-relay-expansion.html
https://onion.io/store/oled-expansion/

1.0 Introduction to the Omega?2 21

L€SS 0OaIEYOr DYV

The pixel brightness is adjustable, as well as inversion of white and black. A single command enables
built-in scrolling animations, where the contents of the entire display can be scrolled to the left, right, or
diagonally left, and right.

For more details see:

e OLED Expansion hardware overview
e Guide to using the OLED Expansion

Ethernet Expansion

Add an ethernet port for wired network connectivity with the Ethernet Expansion.

The Omega has a 10/100 ethernet port, meaning it supports transmissions at 10 Mbps and 100 Mbps.
The Omega has extensive networking capabilities, use the Ethernet Expansion to share network access
between wired and wireless networks. Or, just provide a wired network connection to the Omega.

https://docs.onion.io/omega2-docs/oled-expansion.html
https://docs.onion.io/omega2-docs/using-oled-expansion.html
https://onion.io/store/ethernet-expansion/

22 Chapter 1. Onion Omega2 Project Book Vol. 1

For more details see:

e Ethernet Expansion hardware overview
e Guide to using the Ethernet Expansion

GPS Expansion

The USB-based GPS Expansion provides location data from the Global Positioning System (GPS)
satelittes.

The on-board antenna is connecting using a u.FL antenna connector, meaning that it can be easily
unplugged and replaced with a larger, more powerful antenna.

For more details see:

e GPS Expansion hardware overview
e Guide to using the GPS Expansion

https://docs.onion.io/omega2-docs/ethernet-expansion.html
https://docs.onion.io/omega2-docs/using-ethernet-expansion.html
https://onion.io/store/gps-expansion/
https://docs.onion.io/omega2-docs/gps-expansion.html
https://docs.onion.io/omega2-docs/using-gps-expansion.html

1.0 Getting Started 23

Getting Started

Just got your Omega and wondering how exactly to get to making IoT things? Go through our Get
Started Guide and you’ll learn and accomplish the following:

e Properly connecting the Omega to a Dock and providing power

o Learning your Omega’s unique name (it’s just Omega- and the four bolded hex digits on the Omega’s
cover)

e Connecting the Omega to your WiFi network

e Updating the Omega to the latest firmware

Then you’ll be ready to start on the projects!
If you’re curious, here’s some more recommended reading:

e Connecting to the Omega’s Command Line
e Using the Console, the Omega’s web-based virtual desktop
e An overview of all of the Onion hardware

If you're excited to get building, go on ahead. Remember to go back to the Onion Documentation if
you're looking for clarification on how something works!

The Command Line

The Omega’s operating system (OS) is based on Linux, a popular open-source OS that powers servers and
computers all over the world. The version on the Omega is a minimalistic and lightweight distribution

https://onion.io/getstarted
https://onion.io/getstarted
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/the-console.html
https://docs.onion.io/omega2-docs/hardware-overview.html
https://docs.onion.io

24 Chapter 1. Onion Omega2 Project Book Vol. 1

called LEDE, which stands for Linux Embedded Development Environment. It supports many
programming languages and and can run all kinds of complex projects while still being small enough to
fit in the Omega’s memory.

The Command Line Interface

We interact and operate the Omega by using the command line interface (CLI). The CLI is the
user’s access point into the operating system using a text-based terminal program. All user interaction is
interpreted and executed by the OS through instructions, or commands. A user enters a command into
a terminal to make something happen.

The CLI can look something like the picture below. In this terminal program on Windows, the green box
is where the commands you type will be displayed on the screen.

£P COM4 - PuTTY - O X

WEe’ll cover how to do the following:

e Navigating through the filesystem
o Creating (and deleting) files and directories
e Creating and modifying text files

The Filesystem
In Linux, everything is a file. So naturally, the file system is where a great deal happens. The filesystem
of LEDE is organized like a tree. At the very bottom of a tree is the root, and so it is with our filesystem.

/ is the universal symbol for the very bottom of the filesystem - the root directory. All the files that the
OS has access to can be found under some directory under /.

1.0 The Command Line 25

This is not to be confused with the root directory. In LEDE, every user gets their own ‘home’ directory
to store all their personal files. On the Omega, this is located at /root/ by default. When we connect
to Omegas’ command line via ssh, we connect as the root and get placed inside the /root/ folder.
(Connecting via serial will place us in /.)

In Linux systems, ~ is an alias for the home directory, and can be used in scripts and programs. For
example, calling a file in ~/myProject is equivalent to calling /root/myProject.

On the Omega, all the contents in the /root/ directory will be preserved through any firmware updates.
So for our experiments, we’ll try to store our files in there so they stay put!

The home directory on other Linux systems may look like /home/<username>

Navigating the Filesystem

Navigation usually consists of finding our location, looking for landmarks, and then setting a course for
our destination. To that end, we’ll look at the pwd, 1s, and cd commands to let us do just that.

Locating Ourselves in the Filesystem

When we first drop into the command line, we don’t get a lot of information about where we are. We only
really know that we're in root@omega-ABCD. The pwd command will tell us exactly where we are relative
to /

Immediately after logging in, pwd should return something like this:

root@0Omega-ABCD: ~# pwd
/root

This tells us we’re in the /root/ folder, one level down from /. Notice that the prompt (all the things
before #) already tells us where we are, the ~ is exactly our working directory /root.

What’s in a Directory?

Now that we know where we are, we should take a look at our surroundings. To list out every file in a
directory, the 1s command is our go to.

For example, on one of Onion’s office Omegas, this is what 1s outputs:

root@0imega—-ABCD: ~# 1s
MAKO1-dimmingLeds.py checkAS6200Temp.sh
binify.sh checkTemp.py

Awesome, now we know there’s four files in the working directory.

But wait, there’s more! Not only can 1s list the working directory, if we give it a path, it can also peek
into that path.

A path is the full location of something in the filesystem, starting from the root.
Let’s say we want to take a look into our / directory, we can append / as an argument like so:
1s /

Which might return something like this:

26 Chapter 1. Onion Omega2 Project Book Vol. 1

root@imega-7CCB: ~# 1ls /

bin 1ib rom tmp
mnt root usr dev
overlay sbin var etc
proc sys WWW

The prompt tells us we’re still in ~, but those are folders in /.

You can Get There from Here

Of course we can’t stay in the same working directory forever. We can move around directories using the
cd command. It stands for change directory.

The most frequent use of cd is in conjunction with a path as the argument, like so:
cd /root
This command changes the present working directory to /root.

Earlier, we mentioned the idea of a ‘path’ in passing. A path (or ‘absolute path’) is like the full address
to something in the file system. For example, if you have a directory called kittens in your /root folder,
the path of that directory is /root/kittens. Similarly, for a file called adorable. jpg in /root/kittens,
the path would be /root/kittens/adorable. jpg.

Typing out the full path everything can become tedious, so there are many shortcuts that cd can under-
stand in the form of ‘relative paths’ There are some path aliases that change where it leads depending
on the context.

o To go to the /root on the Omega (or the home folder as a different user) cd with no arguments
will take us there.

e The relative path for the ‘directory above’ is .., so cd .. will take us up one level no matter where
we are.

e To get to any sub-directories in the working directory, we can cd <name of directory> instead of
the absolute path.

All of the shortcuts above work with each other too!
Let’s say we want to move two directories up:
cd ../..

The first .. expands to ‘up one level’, and in that directory, .. again will of course take us back up once
more.

We can also move to other directories contained in parent directories. If .. had a directory called puppies,
we could run:

If we want to cd up and sideways into the kittens directory, we can use the path ../kittens - up one
level, and into kittens below.

Interacting with the Filesystem

Navigating is very useful, but doing things with files is what gets projects working! So to do that, we’ll
go over commands to create and delete directories, and creating and removing files.

We’ll cover the mkdir and touch commands to create things, and the rm command to get rid of them.

1.0 The Command Line 27

Creating Directories

The mkdir command allows us to create empty directories. Run it like so:
mkdir <DIRECTORY>

You can use both relative and absolute paths. See the example below:

root@0mega-ABCD: ~# mkdir hello # relative path
root@0mega-ABCD: ~# 1s
hello

root@0Omega-ABCD:~# mkdir /root/hello/world # absolute path
root@0mega-ABCD: ~# cd hello

root@imega-ABCD: ~/hello# 1s

world

Creating Files

The touch command can be used to create files. The syntax looks like this:
touch <FILENAME>

o If the file doesn’t exist yet, it creates an empty file.
o If the file already exists, it updates the time it was last modified to when you ran the command.
You can check the file’s last modified time using 1s -1 like in the example below:

root@Omega-ABCD: ~# touch hello.txt
root@imega—-ABCD: ~# 1ls -1

“IW-r—-r-- 1 root root 0 Mar 23 23:38 hello.txt # we've created our file
root@0mega-ABCD:~# cat hello.txt
root@0mega-ABCD: ~# # nothing happens, the file is empty

(wait a minute or two)

root@0mega-ABCD: ~# touch hello.txt # update the time it was last modified
root@Omega-ABCD:~# 1s -1
—“Irw-r--r-- 1 root root 0 Mar 23 23:41 hello.txt # the modified time updated

Deleting Files and Directories

Delete a file using the rm command like so:

rm <FILENAME>

To delete a directory and all of the files inside it, run:
rm -rf <DIRECTORY>

These two options are explained below:

e -r - recursive mode
— This means to go into a directory and delete all of the files inside.
— If it finds more directories, it enters them and deletes their contents as well.

28 Chapter 1. Onion Omega2 Project Book Vol. 1

— This is required when deleting directories, otherwise it will return an error.
o -f - force
— This will make the program continue if it runs into an error when trying to delete a file.

File Editing on the Omega

The projects are based on code, which live in files, so it stands to reason that we’ll be doing some file
editing for each of our projects.

On the Omega, there’s one text editor by default - Vim. It’s different from more familiar, visual editors
in how it works, so we’ll cover the basics super quickly to get to making cool things faster!

Creating or Opening a File

To work with a file, simply call vim <filename>. It will work if you do vi <filename> as well.

If the file already exists, it will open it in vim. If it doesn’t, it will open an empty temporary file with
the given name.

The temporary file won’t be permanent until you save it!

If you type things immediately when vim starts, nothing will come out. So how do we get text in?

Writing Text

Hit i to get into ‘insert mode’, now we can start entering text!

The controls of insert mode should be quite familiar if you've used notepad before. The keys will insert
characters, the arrow keys provide nagivation, and home/end/pgup/pgdn will behave accordingly.

Vim is based on different modes. Entering characters and pasting with ctrl-shift-v will only work in
insert mode.

Vim begins in normal mode, where all keystrokes are interpreted as commands. So all the text you
want to paste will be interpreted as commands, causing lots of unpredicatble changes to the file.

If mistakes were made, what can we do?

Undo and Redo
Undo is a normal mode function, hit ESC and press u to undo the last bit of changes made. To redo hit
ctrl-r in normal mode.

The reason we hit ESC first is to return to normal mode. So instead of inserting u, vim will undo the last
changes we made.

Once the code is fixed, it’s time to save.

1.0 Intro to Python 29

Saving Changes

Hit ESC to enter normal mode, then :w and enter.

Entering : calls the ‘command line’ of vim, where we can run vim’s less often used functions. The
command we give it is w which stands for ‘write to file’. Since : works like a command like, we have to
enter to send our command to it.

The more commonly used commands in vim are related to navigating, copy/pasting, and
editing chunks of text - like u for undo.

Now that we’ve saved, we’ll have to exit vim to test the script.

Quitting and Saving changes

ESC, then :wq enter.

The quitting process is very similar to saving - return to normal mode with ESC, type : to enter the q
command to quit vim.

Vim also has the ability to accept multiple commands and execute them in order. So we can save and
quit by typing :wq.

Quitting without Saving Changes

:q!
Forcing vim to quit can be done by adding ! to the end of the :q command.

Normally when trying to exit vim with unsaved changes, vim will deny the attempt as a safe measure.
But quitting without saving is also useful to revert really big changes.

More on Vi

There’s a lot more than meets the eye with vim. It’s actually a very powerful editor under the hood and
can be installed in all major operating systems. If you want to learn how to make the most out of it,
Open Vim has a fantastic tutorial that can get you started.

Intro to Python

Python is the programming language of choice for this project book since it’s powerful, flexible, and
generally easy to use.

As an introduction, this article will cover some of the basics so we can hit the ground running!

Python is a high-level, interpreted language designed for scripting. It supports Object Oriented Program-
ming - which is a handy framework that we’ll be using quite a bit.

The high-level part means that Python reads closer to English than machine instructions and abstracts
away many of the low-level hardware intricacies. The interpreted part means that Python code is executed
line-by-line by the computer as it’s being run - as opposed to languages like C where it is first compiled
before it can be run.

http://www.openvim.com/tutorial.html

30 Chapter 1. Onion Omega2 Project Book Vol. 1

How we’ll use Python

The experiments will provide code that works out of the box that can be directly copied to the Omega
and run. We'll also discuss more interesting sections of the code in detail.

Python Syntax Overview

import time
print ('This line will not be printed')
greeting = 'Hello world!'
print (greeting)
for count in range(0,10):
if (count % 2 == 0):
print ('Tick')
else:
print ('Tock')
print (count)
time.sleep(0.5)
The above is a block of Python code with all the basic building blocks of the language. Let’s go through
it bit by bit.

Variables

greeting = 'Hello world!'

The equals sign (=) assigns the string ‘Hello world!’ to the variable named greeting.

All variables in Python are created this way with the assignment operator.

Comments

This s a comment

Comments in Python start with a #. Any text after the hash in the same line will be ignored by the
interpreter.

Functions

print ('just a function')

Function statements

Functions in Python have two parts: a function name and a list of arguments that are sent to it.

1.0 Intro to Python 31

Name Argument

print ‘just a function’

The number of arguments that a function takes can be zero. Some functions return a value that you can
assign to a variable.

Logic

if (count % 2 == 0):
print ('Tick')
else:
print ('Tock')

The if/else structure is used to evaluate variables and make decisions based on them. All indented lines
after the if statement will be executed if the condition is met. The first un-indented line after the if
statement ends the statement. For else, all indented lines after the else line will be executed when the
condition of the if statement is unmet. So in the code above, only one option gets executed (either
‘Tick’ or ‘Tock’) when the interpreter gets to this part. Which one depends on the value of count.

Extra evaluation statements can be inserted as an elif block like so:

if (count % 2 == 0):
print ('Tick')
elif (count == 3):
print ('Tack')
else:
print ('Tock')

This adds a third option - all indented code after the elif statement will be executed if:

e The if condition is unmet
e AND the elif condition is met

Now one of three options will be executed, printing either ‘Tick’, ‘Tock’, or ‘Tack’ depending on value
of count.

Looping

For-loop with a counter wvariable
for count in range(0,10):
print (count)

While-loop — checks condition first, then starts the loop
while (count <= 10):
print (count)

The for-loop can iterate over any list, executing all indented code after the for statement as many time
as the number of elements in the list. The range function returns a list of integers in the given range. So

32 Chapter 1. Onion Omega2 Project Book Vol. 1

the for-loop above will run 10 times, same as the example up top. However this loop will print the count
of each cycle instead of ‘Tick’ and ‘Tock’.

The while loop checks a single condition every loop, so it’s useful for infinite loops and checking unique
conditions. Since count doesn’t change during the while loop, it will run forever assuming count is no
greater than 10, continuously printing an unchanging value of count.

Using Libraries
Importing a library

import time

The import statement above adds all the functionality of the time standard library to be available in
your program.

Calling a function included in the library is done using the . notation - time.sleep() will call the
sleep() function in the time library.

Learning More about Python

Python is a very popular language, so there’s a tremendous amount of tutorials out there. If you're still
unsure of how parts of our code work, we recommend taking a look at the guides over at the Python Wiki
for programmers or non-programmers.

Where Can I Learn More?

To learn more about the Omega and the Docks & Expansions, what can be done, and much more, check
out the Onion Omega2 Documentation:

https://docs.onion.10

If you encounter issues, are looking for help with debugging, or just general Omega talk, check out the
Onion Community Forum:

https://community.onion.io

Where to Get More Onion Products

Glad you asked! Onion products can be purchased from the Onion online store!

https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://docs.onion.io
https://community.onion.io/
https://onion.io/store

1.0 Reporting Issues 33

They’re also available from a variety of retailers around the world. In either case, check out the Onion
online store to find the best place to get more Onion gear!

Reporting Issues

While we’ve done our best to make sure everything in this project book is 100% correct, it’s possible that
we’ve made mistakes, typos, or left stuff out. We would also love to hear any comments or suggestions
you have!

If you find anything amiss with the project tutorials, please let us know by creating an issue on GitHub.

If you find a problem in the code of a project, all projects have their own GitHub repository, please create
an issue on the corresponding repository.

https://onion.io/store
https://onion.io/store
https://github.com/OnionIoT/Onion-Docs/issues

2 | Starter Projects

The Omega is a great platform to learn how to work with electronics, how to write programs, and how
to interact with Linux systems. Let’s start with a few projects to get acquainted with using the Omega.

Concepts

The concepts covered in the starter projects:

o Using scripts to implement logic and perform specific actions
o Controlling external electronics using the Omega

36 Chapter 2. Starter Projects

Projects

Projects to get you started working with the Omega:

1. Morse Code on the Omega’s LED
e For our very first project, we’ll write a script that takes text, converts it into morse code, and
shows the morse code message on the Omega’s built-in LED
2. Traffic Light using LEDs
o Get started making projects with external circuits by creating a miniature traffic light with a
few LEDs

Morse Code on an LED

Morse code is an old binary encoding that transmits messages letter-by-letter through sound or a flashing
light.

In this project we're going to write a script that will blink the Omega’s LED in morse code based on the
user’s input using the Omega’s command-line interface.

Overview

Skill Level: Beginner

Time Required: 15 minutes

2.0 Morse Code on an LED 37

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock - we like the Mini Dock for this project!

Step-by-Step

This project will take advantage of a morse LED utility that comes pre-loaded on the Omega. We'll test
out how it works, then write a script to translate text live as we enter it!

1. Prepare the ingredients
You’ll have to have an Omega?2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

This project requires the use of the Omega’s command-line, so we’ll have to either SSH into the Omega’s
command-line, or connect serially.

To learn more on how to connect to the Omega’s command-line you can read our comprehensive guide to
connecting to the Omega.

2. Controlling the LED with the ‘morse’ command

The Omega comes ready with a kernel module that can translate text to Morse code and blink an LED,
but you’ll need to tell the kernel which LED you want to blink. The kernel exposes a lot of hardware
status and configuration options through a virtual filesystem under /sys.

The files under /sys aren’t actually files, but they look and act like files to make it very easy
to access them from the command line and in scripts or programs.

To tell the kernel that we are going to use the Morse code module, set the LED trigger condition for the
Omega system LED to morse by using the echo command to write the setting into the virtual file:

echo morse > /sys/class/leds/omega2\:amber\:system/trigger

If you're using an Omega2+, the LED will be named omega2p:amber:system

So the command will look like this instead:

echo morse > /sys/class/leds/omega2p\:amber\:system/trigger

You can verify that it worked by using cat to look at the virtual file:
root@Omega-2757:~# cat /sys/class/leds/omega2\:amber\:system/trigger

none mmcO timer default-on netdev transient gpio heartbeat [morse] oneshot

The square brackets indicate that the morse trigger is currently selected. The text in that file shows the
other available options that this particular bit of the kernel can be set to.

Anyway, now we have everything set up!

Once the morse option is selected, the kernel creates a new virtual file for that called message. We will
echo the text we want to it:

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/product-category/docks/
https://onion.io/store/mini-dock/
https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html

38 Chapter 2. Starter Projects

echo Hello, Onion > /sys/class/leds/omega2\:amber\:system/message

Now watch your LED!

The message will keep looping forever or until you change it. To stop it, you can either clear the message
entirely:

echo > /sys/class/leds/omega2\:amber\:system/message

or change the LED trigger to something else:

echo default-on > /sys/class/leds/omega2\:amber\:system/trigger

Adjusting the Delay

If it’s too fast or too slow, you can change the speed with the delay file:
root@imega-12D9:~# cat /sys/class/leds/omega2\:amber\:system/delay
50

To slow it down a bit, we echo a bigger number:

root@0Omega-12D9:~# echo 100 > /sys/class/leds/omega2\:amber\:system/delay

3. Using a Shell Script instead of ‘echo’

Create a file called morse.sh in the root directory using the following command:

vi /root/morse.sh

You'll open an empty file. To start typing you can enter a.

Copy the code below into the terminal.

#!/bin/sh

find the name of the board, to be used in the name of the LED
. /1lib/ramips.sh
board=$(ramips_board_name)

define the function that will set the LED to blink the arguments in morse code
_MorseMain () {

echo morse > /sys/class/leds/$board\:amber\:system/trigger

echo 120 > /sys/class/leds/$board\:amber\:system/delay
echo $* > /sys/class/leds/$board\:amber\:system/message

Main Program

run the function and pass in all of the arguments
_MorseMain $*

2.0 Morse Code on an LED 39

exit

This block diagram shows the steps the _MorseMain function will perform:

Set Trigger to
'‘morse”

Setdelay to 120

Send Message

Now to save the file you’ll have to enter the Command Mode by hitting the ESC button on your keyboard.

The Command Mode of vi allows you to enter keys to perform commands such as saving and
exiting, exiting without saving, or deleting lines.

Type :wq and hit enter to save and exit your file.

40 Chapter 2. Starter Projects

COM3 - PuTTY = O X

You are now ready to convert text to morse code!

4. Run it!

To run your Script enter the following command to run your script:

sh /root/morse.sh <YOUR MESSAGE HERE>

Enter a message that you would like to blink in morse code:

root@0imega-2757:~# sh /root/morse.sh Hello Onion

2.0 LED Traffic Light 41

Once you're done, you can set the blinking back to default-on with the following command:

echo default-on > /sys/class/leds/omega2\:amber\:system/trigger

Remember, on an Omega2+, the LED will be named omega2p:amber:system as op-
posed to omega2:amber:system so you will have to pipe the above command to
/sys/class/leds/omega2p\:amber\:system/trigger

LED Traffic Light

For this project, we will be building a working, miniature traffic light using a few LEDs and the Omega.
We’ll also introduce the basics of controlling the Omega’s GPIOs with a Python program.

42 Chapter 2. Starter Projects

Overview

Skill Level: Beginner
Time Required: 10 minutes

We’ll be using the Onion GPIO Python module. This module is the bread and butter of any project
where you will need to control and interface with other circuits!

The complete project code can be found in Onion’s starter-traffic-light repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that exposes the Omega’s GPIOs: Expansion Dock, Power Dock, Arduino Dock
2, Breadboard Dock
e 1x Breadboard
e 3x LEDs
— Ixred
— 1x yellow/amber
— 1x green

https://docs.onion.io/omega2-docs/gpio-python-module.html
https://github.com/OnionIoT/starter-traffic-light
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/breadboard-dock/
https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B0060FGA8A/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B0060FGA8A&linkCode=as2&tag=onion0e-20&linkId=b097a11c67d19b7ed8a7172fe06c8a49

2.0 LED Traffic Light 43

o 4x Jumper Wires (M-M)
o 3x 20052 Resisters

Step-by-Step

Follow these instructions to set this project up on your very own Omegal

1. Prepare the ingredients

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

This project will need the Omega’s command-line, so we’ll have to either SSH into the Omega’s command-
line, or connect serially.

To learn more on how to connect to the Omega’s command-line you can read our comprehensive guide to
connecting to the Omega.

https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B0060FGA8A/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B0060FGA8A&linkCode=as2&tag=onion0e-20&linkId=b097a11c67d19b7ed8a7172fe06c8a49
https://docs.onion.io/omega2-docs/first-time-setup.html

44 Chapter 2. Starter Projects

Wire Up the LEDs

1. Plug in the LEDs across the breadboard, with the cathode on the left side of the gap and the anode
on the right.
e Make sure red is above amber, and amber above green!
2. Connect one end of a 20082 resistor to the cathode row, and the other end to the negative rail
marked - on the left side of the board.
Connect the - rail to one of the GND pins on the Omega.
4. Connect the GPIOs to the LEDs in the following manner:
e Red to GPIO2
e Amber to GPIO1
o Green to GPIOO0

w

1. Install Python

Install Python, the required Python module, and Git by running the following commands:

opkg update
opkg install python-light pyOnionGpio git git-http ca-bundle

2.0 LED Traffic Light 45

2. Download the Project Code
The code for this project can be found in Onion’s starter-traffic-light repo on GitHub. Use git to
download the code to your Omega: navigate to the /root directory, and clone the GitHub repo:

cd /root
git clone https://github.com/OnionloT/starter-traffic-light.git

Since the project code is only a single file, you can download the code directly to avoid installing
and using git:

mkdir /root/starter-traffic-light
cd /root/starter-traffic-light
wget https://raw.githubusercontent.com/OnionIoT/starter-traffic-light/master/main.py

3. Running the Project

Enter the project directory and run the main.py file:

cd starter-traffic-light
python main.py

You should see the lights changing color!

https://github.com/OnionIoT/starter-traffic-light
https://docs.onion.io/omega2-docs/installing-and-using-git.html
https://docs.onion.io/omega2-docs/installing-and-using-git.html

46 Chapter 2. Starter Projects

Code Highlight

We use the Onion GPIO Python module to control the GPIOs. It provides an object with convenient
functions such as setOutputDirection() and setValue() that allow us to control the Omega’s GPIOs
and abstract a lot of the work under the hood.

For some insight in how the GPIO class works, take a look the main.py file:

o First, three OnionGpio objects are instantiated, with the GPIO number passed in. Now there are
three OnionGpio objects, each controlling one of the Omega’s GP1Os

e Next, all three GPIOs are set to the output direction with a default value of 0 or OFF by calling the
setOutputDirection() function on each of the OnionGpio objects

e Then, the values on the GPIOs can be changed at any time by calling the setValue() function on
the objects. The setSignal() function sets the value of all three GPIOs depending on the color
the miniature traffic light is meant to be showing, as dictated by the function argument.

For more details, take a look at the Onion GPIO Python module documentation.

https://docs.onion.io/omega2-docs/gpio-python-module.html

3 | OLED Expansion Projects

Now that you're a little more familiar with using the Omega, let’s take advantage of the Omega’s wireless
connectivity and processing power to do create some more intricate projects. Since the Omega2 IoT
computer doesn’t have video output like a traditional computer, we’ll use the OLED Expansion as the
primary way to communicate information to users.

We can generate images to display:

Or display data from online sources or attached hardware:

https://onion.io/store/oled-expansion/

48 Chapter 3. OLED Expansion Projects

Concepts

A highlight of the concepts that will be covered in these projects:

o Acquiring data from a one-wire sensor

« Displaying sensor data on the OLED

e Generating images to display on the OLED

 Installing additional software on the Omega
e Using APIs to get data from online services

e Reporting data to the Ubidots IoT Platform

Projects

1. QR Code Generator
e Create QR codes with your very own text and display them on the OLED screen
2. News Flash Headlines
e Show the latest news headlines using your Omega
3. Stock Ticker
o Get stock ticker data for your favorite companies
4. Twitter Feed Display

3.0 Ambient Temperature Monitor 49

e Stay up to date with the latest Tweet of any Twitter user
5. Ambient Temperature Monitor
e Measure and display the ambient temperature. Push the data to the Ubidots IoT Platform
and view it from anywhere!

Ambient Temperature Monitor

This project will allow you to read temperature from a digital sensor, display it on the OLED Expansion,
and also push the data to Ubidots IoT Platform for logging and monitoring!

Visualize and track the data on Ubidots:

https://ubidots.com/

50 Chapter 3. OLED Expansion Projects

@ temperature

£ ——
36 ///
34
32
30
28
26
13:59 30 14 30 14:01 30 14:02 30
q ®
Tue 11 Tue 11 Tue 11 Tue 11 Tue 11
Date Value Context Delete

14:02:32 -04:00 38.75 7 8

Overview

Skill Level: Beginner-Intermediate
Time Required: 20 minutes

We’'ll be using a software 1-Wire bus to read the temperature from a sensor. The code will then write
the value on the OLED Expansion and push the data to your Ubidots account. We’re also using Onion’s
pyOledExp module to provide control of the OLED Expansion.

This project also shows how, with a little bit of craftiness, it’s possible to use the Omega’s GPIOs to
control external circuits while still using the OLED Expansion.

The complete project code can be found in Onion’s temperature-monitor repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
e Onion OLED Expansion
e 1x DS18B20 1-Wire Temperature Sensor
o 1x 5.1 k) Resistor
— We used 5.1 k€2 but anything between 4 and 6 k{2 will work just as well
e 3x Male-to-Female or Male-to-Male Jumper Wires
— Make sure they use threaded wire on the inside
e 1x Breadboard

Tools:

e Wire Cutter
o Wire Stripper

https://ubidots.com/
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://github.com/OnionIoT/temperature-monitor
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://www.amazon.com/gp/product/B004G53D54/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004G53D54&linkCode=as2&tag=onion0e-20&linkId=79fff5f353a360474ce314466504b359
https://www.amazon.com/gp/product/B016NXK6QK/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B016NXK6QK&linkId=62595ffef640175ce3a3b44fabd712e4
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B00FZPDG1K/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00FZPDG1K&linkId=da863e47a2ed2006e1b78c13d1c1c0a0
https://www.amazon.com/gp/product/B0000302WM/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0000302WM&linkId=0163bdb27332986665ec8254b1904099

3.0 Ambient Temperature Monitor 51

Step-by-Step

Follow these instructions to setup the Ambient Temperature Monitor project on your very own Omegal!

1. Prepare

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

Do not plug in your OLED Expansion just yet.

2. Install Software

Connect to the Omega’s Command line and install Python as well as some of the packages we need:

opkg update
opkg install python-light python-urllib3 pyOledExp ubidots-client git git-http ca-bundle

The python-urllib3 package will allow us to make HTTP requests in Python, while the py0ledExp
package gives us control of the OLED Expansion.

The ubidots-client package will allow us to push and pull data from the Ubidots IoT Platform.

The git, git-http, and ca-bundle packages will allow us to download the project code form GitHub.

3. Download the Project Code

The code for this project is all done and can be found in Onion’s temperature-monitor repo on GitHub.
Use git to download the code to your Omega: navigate to the /root directory, and clone the GitHub
repo:

cd /root
git clone https://github.com/OnionIoT/oled-temperature-monitor.git

4. Setup Ubidots

First, sign up for a Ubidots account. At the time this was written, you should have 5000 credits in your
account available for trial and testing. This is more than enough to get this project running!

Then go to the account homepage, and click on Devices at the top, and click on the grey Add Device
button. Call it 1-wire-project like so:

https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://github.com/OnionIoT/temperature-monitor
https://docs.onion.io/omega2-docs/installing-and-using-git.html
https://ubidots.com/
https://app.ubidots.com/ubi/insights/#/list

52 Chapter 3. OLED Expansion Projects

:.E Ubidots Dashboards

My Devices

1-wire-project Ve |

0 Variables

Now we need to add a variable to store our data. Click on the device’s blue card to go to its device page.
Then click on the grey Add Variable button, then click Default. Call the new variable temperature (case
sensitive) like so:

ses ubidots

€ 1-wire-project

Your Device doesn't have a location

You can add a location to your Device by clicking here

1-wire-project

Description

Click here to add a descriptior

APl Label ®

1-wire-project

Tags

Add tags
Last Activity No last activity

No last activity

3.0 Ambient Temperature Monitor 53

Now we need to create an API key for this project. Click on your username in the top right of the screen,
then click My Profile. In the profile menu, click on API Keys on the left. Then click on the blue Create
Token button to generate a token; click on the newToken text to rename it to 1-wire-project.

{3: ubidots

e

In order to authenticate your requests to Ubidots, you will need to put this long string of text into the
config.json file in the project directory on the Omega. Replace the yourTokenhere placeholder with
the key you just created:

"token": "yourTokenHerelj,

"deviceName": "1-wire-project”

Your software is now ready to run!

5. Prepare the Wires

Next you will need to prepare the wires. The OLED Expansion does not have female headers to connect
wires or Expansions because they may block the screen. To deal with this, do the following for each of
the 3 wires:

1. Using the wire cutter, cut one connector of the jumper wire off while leaving a male end intact.
e One male end is needed to connect to the breadboard!
2. Using the wire stripper, strip about 10mm of insulation from the freshly cut end.
3. Pinch the exposed wire with one hand and twist it several times until the threads are thoroughly
wound around each other.
e This is so they don’t fray.
4. Take the twisted wire and bend it 180 degrees backwards in half to make a thin hook-like shape.
5. Twist the hook again so it closes and doesn’t fray.

Your wires should look like this:

54 Chapter 3. OLED Expansion Projects

6. Connect the Sensor

Use this diagram for reference when wiring up the sensor:

3.0 Ambient Temperature Monitor 55

DS18B20

GND DQ Voo

T

2 3

BOTTOM VIEW

TO-92
(DS18B20)

We will treat the flat side as the front.

1. With the front of the sensor facing the middle gap of the breadboard, insert the three pins across 3
adjacent rows.
2. Connect the 5.1k resistor to both DQ (pin 2) and Vdd (pin 3).

Your sensor should look like this:

56 Chapter 3. OLED Expansion Projects

7. Sensor -> Omega

Our sensor is now ready and we need to connect it to the Omega using the wires we just prepared. The
male end of the wire will plug into the breadboard while the bare ends will go into the Dock’s Expansion
pins.

1. Connect GND (pin 1) to the Omega’s GND pin.
2. Connect DQ (pin 2) to the Omega’s GPIO19.
3. Connect Vdd (pin 3) to the Omega’s 3.3V pin.

Insert the bare ends of the wire into the Expansion Dock like this:

3.0 Ambient Temperature Monitor 57

Your circuit should now look like this so far:

58 Chapter 3. OLED Expansion Projects

8. Connect OLED Expansion

The OLED Expansion will then plug in on top of the wires; it might be a little bit of a tight squeeze but
you will definitely be able to successfully plug in the Expansion. Plug it in and it should look like this:

3.0 Ambient Temperature Monitor 59

Good work! You’ve just done a little bit of physical hacking to use a sensor alongside the OLED Expansion.

9. Run the Code

On the Omega, launch the program:

cd /root/temperature-monitor
python main.py

You should see something like this:

60

Chapter 3. OLED Expansion Projects

Now go to your Ubidots account page and check on your temperature variable in the 1-wire-project
device. You should see your new reading:

39.687

temperature

Description
Click here to add a description

APl Label O

temperature

Allowed range
min - max

Unit

Tags

Last Activity

a few seconds ago

statistic~)

C

40
40

39
45.019

Date

7N

2017-04-11 14:03 - 2017-04-11 14:03 ~)

@ temperature

Thu 13

Value Context

Delete

2017-04-11 14:03:45 -04:00

39.687 o

3.0 Ambient Temperature Monitor 61

10. Automate the Program to Run Periodically

The program will read the temperature, display it on the OLED, push the value to Ubidots, then promptly
exit. We’ll use cron, a super useful Linux utility, to have the program run periodically.

Enter crontab -e to add a task to the cron daemon, it will open a file in vi, enter in the following:

* x x x x python /root/temperature-monitor/main.py
#

This assumes that your project code is located in /root/oled-temperature-monitor
Now, we’ll restart cron:
/etc/init.d/cron restart

And the code will run once every minute, pushing data to your Ubidots account so that you can
view the changes over time!

@ temperature

39 — ——

13:59 30 14 30 14:01 30 14:02 30

Tue 11 Tue 11 Tue 11 Tue 11 Tue 11
Date Value Context Delete
-]

Check out the Omega documentation for more info on using cron

Code Highlight

This project makes use of two main interfaces: 1-Wire and Ubidots.

1-Wire

The 1-Wire protocol is a bus-based protocol that, as the name implies, uses one data wire to transmit data
between devices. The main.py script uses some functions from the oneWire.py module to automatically
do the following;:

e setup a 1-Wire bus on the Omega
e scan for the temperature sensor’s address
« use the sensor in subsequent calls without you having to probe it yourself!

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html

62 Chapter 3. OLED Expansion Projects

Ubidots

The Ubidots requests are handled by the ubidots-client command line utility that the Ubidots class
calls. This is the same as running the command below:

ubidots -t (TOKEN) -d (DEVICENAME) set '{"variableOne":12, "variableTwo":10, ...}'
In the case of this project, the equivalent command would be:

ubidots -t (TOKEN) -d (DEVICENAME) set '{"temperature": (VALUE READ FROM SENSOR)}'

QR Code Generator

QR Codes are essentially two dimensional barcodes that can easily be scanned with any camera and a
little bit of processing power. The average smartphone will make short work of any QR code it comes
across.

In this tutorial, we’ll go through how you can use Python to encode text into a QR Code and display it
on your OLED Expansion:

3.0 QR Code Generator 63

The resulting code can then be scanned to read the encoded text. If it’s a URL that’s encoded, most
smartphone QR code readers will open the browser to this URL. Useful if you have a complicated URL!

Overview

Skill Level: Beginner
Time Required: 10 minutes

This project is mostly code based, all of the code can be found on this Onion GitHub Repo: https:
//github.com/OnionloT /oledQrCodeGenerator

Ingredients
e Onion Omega2 or Omega2+

e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
¢ Onion OLED Expansion

Step-by-Step

Ok, here we go! First we’ll install some required packages to make everything run smoothly, and then
we’ll grab the code for this tutorial from GitHub.

https://github.com/OnionIoT/oledQrCodeGenerator
https://github.com/OnionIoT/oledQrCodeGenerator
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/

64 Chapter 3. OLED Expansion Projects

1. Prepare your Ingredients

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Installing Required Packages

We will need to have support for git, Python, and the Onion OLED Expansion Python Module. Connect
to the Omega’s command line and run the following command:

opkg update
opkg install python-light python-codecs pyOledExp git git-http ca-bundle

3. Downloading the Code

Now we need to download the Python code from GitHub that actually does all the work. Connect to the
Omega’s command line and clone the project repo from GitHub with the following command:

cd /root
git clone https://github.com/OnionIoT/oledQrCodeGenerator.git

4. Running the Code

Finally, we get to make some QR codes! Navigate into the repo directory:
cd oledQrCodeGenerator
And run the program, the argument to the script is the text that will be encoded in the QR code pattern:

root@Omega-18C2:~/oledQrCodeGenerator# python main.py 'Wow, my first QR Code'
Encoding 21 characters

Generated QR Code: 31x31 pixels

Doubled QR Code size: 62x62

Initializing display

Setting display mode to inverted

Writing buffer data to display

V V V V V V

This will encode the data and display the resulting QR code on the OLED Expansion:

https://docs.onion.io/omega2-docs/first-time-setup.html
https://wiki.onion.io/Documentation/Libraries/OLED-Expansion-Library
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/installing-and-using-git.html

3.0 QR Code Generator 65

| 6544 0D89EVOP OV

Program Details
Behind the scenes, the Python code does the following:

e Encodes the input text into a matrix representing the QR Code

— The size of the QR code is based on the amount of input text
e Converts the QR code matrix into data that can be displayed on the OLED
e Displays the resulting image on the OLED display

— Performs display initialization

— Inverts the display colors

— Displays the generated image file

An additional feature was added for easier scanning: if the QR code is small (less than half the height of

the OLED display), the image will be doubled in size so that each QR code pixel shows up as four pixels
on the OLED display.

The default generated QR code will be a Version 3 code with the Low error correction setting and a
one-pixel border, creating a code that is 31x31 pixels. If the amount of text to be encoded cannot fit in
a Version 3 code, the program will select the next version that will fit the amount of data to be encoded.
Check out the Wikipedia entry on QR Codes for more details on QR code versions.

https://en.wikipedia.org/wiki/QR_code

66 Chapter 3. OLED Expansion Projects

5. Using the code as a Python Module (Optional)

The oledQrCodeGenerator code can also be imported as a module into your own Python projects!
The dispQrCode () function will perform the same actions described above.
Example Code

A small example showing how to use this module:

import sys
sys.path.append("/root")
import oledQrCodeGenerator

print 'Now using the oledQrCodeGenerator'
oledQrCodeGenerator.dispQrCode('Hello! ")

print 'All done!'

Note that the above code assumes the project code can be found at /root/oledQrCodeGenerator.
It appends /root to the sys.path list that Python uses when looking for modules that need
to be imported. If the sys.path.append("/root") line is not present, Python will return
an error saying ImportError: No module named oledQrCodeGenerator since it cannot find
the module in the usual places it looks.

Reading QR Codes

It’s no fun to just display QR codes and not be able to read them, right?
Don’t worry, your smartphone is perfectly capable of reading the code from the OLED:

e On Android, we’ve used the QR Code Reader and QR Barcode Scanner apps successfully
e On iOS, we’'ve had success with the QR Reader App

For QR codes that encode a lot of text, your phone might take a little while longer to scan the code. Trial

and error works best in this scenario: try moving your phone to different distances and angles from the
OLED.

Acknowledgements

The code in the qrcode directory is a stripped-down version of lincolnloop’s python-qrcode repo: https:
//github.com /lincolnloop /python-qrcode

News Flash Headlines

This project will pull a fresh headline from News API and display it to the OLED screen. News API is a
news aggregator that returns headlines from a variety of news sources as JSON data.

https://play.google.com/store/apps/details?id=tw.mobileapp.qrcode.banner
https://play.google.com/store/apps/details?id=appinventor.ai_progetto2003.SCAN&hl=en
https://itunes.apple.com/us/app/qr-code-reader-and-scanner/id388175979?mt=8
https://github.com/lincolnloop/python-qrcode
https://github.com/lincolnloop/python-qrcode
https://newsapi.org/

3.0 News Flash Headlines 67

Overview

Skill Level: Beginner
Time Required: 20 minutes
The project will use a Python script to call the News API /articles endpoint for headline data.

The complete project code can be found in Onion’s oled-news-flash repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
e Onion OLED Expansion

Step-by-Step

Here’s how to get your own headlines screen running on your Omegal

https://github.com/OnionIoT/oled-news-flash
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/

68 Chapter 3. OLED Expansion Projects

1. Prepare your Ingredients

You’ll have to have an Omega?2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

Once that’s done, plug in your OLED Expansion:

2. Install Python

Connect to the Omega’s command line and install Python and some additional packages we need:

opkg update
opkg install python-light python-urllib3 pyOledExp

The python-urllib3 package will allow us to make HTTP requests in Python, while the py0ledExp
package gives us control of the OLED Expansion.

3. Download the Project Code

All the code from the project can be found in the oled-news-flash repo on GitHub.
This project only has two files, so you can download it directly to your Omega without much hassle.

mkdir /root/oled-news-flash

cd /root/oled-news-flash

wget https://raw.githubusercontent.com/OnionIoT/oled-news-flash/master/oledNewsFlash.py
wget https://raw.githubusercontent.com/OnionIoT/oled-news-flash/master/config.json

If you'd like to use git instead, install Git on your Omega, navigate to the /root directory,
and clone the GitHub repo:

cd /root
git clone https://github.com/OnionIoT/oled-news-flash.git

https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://github.com/OnionIoT/oled-news-flash
https://docs.onion.io/omega2-docs/installing-and-using-git.html

3.0 News Flash Headlines 69

4. Obtain a News API Key

We need an API key in order to access the News API endpoints. The simplest way is to create an account
which will give us access to the News API key generator.

1. Register at https://newsapi.org/register and copy your API Key:

Account - News API x Lazar

& C | & Secure https://newsapi.org % OQ@ O

created! Your API key is below.

Account

Email

Password

APl key
a0v: ™ : d

API status

Follow us on Twitter to learn about new features and get

API status updates.

2. Open up config.json and paste the API key generated as the X-API-KEY value - replacing your
api key here:

root@0mega-2729:~/0led-news-flash# cat config.json
{

"X-API-KEY" : "a®@
"source" : "reuters",
"sortBy" : "latest"

5. Choose Your Source

News API gets headlines from 70 different news sources. We’ve set the default source to Reuters, but you
can change easily change the source of your headlines. Head over to News API’s sources page and pick
your source:

https://newsapi.org/register
https://newsapi.org/sources

70 Chapter 3. OLED Expansion Projects

List of news source APIs av X Lazar

newsapi.org

News sources

News API can provide live headlines from 70 sources. Click for more details.

Nray ABC News (AU) Al Jazeera English
wo [[2bc-nevs-aul PN o s ozcera-english!
Ars Technica A Associated Press
[clz(cll BBC News sms BBC Sport
NEWS Fbpc-news] s
11§ Bild Bloomberg
[} e [bloonberg
Breitbart News e Business Insider
[breitbart-news) INSIOER Boys iness-insider)

Open up config.json and copy the text under any source you wish as the value for source - replacing
reuters.

root@0mega-2729:~/0led-news-flash# cat config.json

{
"X-API-KEY" : "a® d",

"source” : "the-verge",
"sortBy" : "latest"

6. Run it!

On your Omega’s command line, run the following;:

python oledNewsFlash.py

And you should see the latest news headline on your OLED screen.

3.0 News Flash Headlines 71

7. And Beyond

Now we can automate this script with cron to keep the headlines updated on the OLED screen.
Enter crontab -e to add a task to the cron daemon, it will open a file in vi, enter in the following;:

x/16 * * * * python /root/oled-news-flash/oledNewsFlash.py
#

This assumes that your project code is located in /root/oled-news-flash/ - if it’s not, don’t
forget to change the directory!

Now, we’ll restart cron to update it with our new task:
/etc/init.d/cron restart
And the code will run once every 15 minutes, updating the OLED screen with the latest headline.

Check out the Omega documentation for more info on using cron

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html

72 Chapter 3. OLED Expansion Projects

Code Highlight

Many web sites and services provide Application Programming Interfaces (API) to allow others to call on
the data they provide without a whole webpage to bog it down.

Calling an APT is all about knowing what the API needs, and how to deliver that data.

To contact any API, we need to know at least two major things:

1. URL - the address we need to look up
2. Method - what method the URL accepts, and what do they do

Endpoints

For this project, our URL is https://newsapi.org/vi/articles. The URL has two bits to it, first is
the the actual API’s location - newsapi.org/v1l/. The second is the endpoint, kind of like a specific
apartment number of the address. Here it’s /articles.

Together, they’re often referred as an endpoint of the API.

News API has a /sources endpoint as well which provide different services when called.

Methods

Now that we have our endpoint, we need know how to request data from it.

When sending a request, it must be made with a request method to let the server know what we need
at a broad level from the endpoint.

HTTP supports at least nine different request methods to accommodate different needs. The most
common ones are ‘GET’, ‘POST’, and ‘DELETE’.

Logically, to get data from the /articles endpoint, we need to send it a ‘GET’ request.

Parameters, Headers and Bodies

Often, APIs provide personalized data - calendars, emails, and other user-specific data. To implement
this kind of interaction, requests are sent with parameters, headers and possibly a body for ‘POST’
requests.

Parameters are strings that get appended to the request URL with details about our request. This is the
most basic way of communicating additional information to the server.

In this case, the source and sortBy values are sent to the server through URL pa-
rameters. Meaning, the request from the news flash code is to the following URL:
https://newsapi.org/vl/articles?source=reuters&sortBy=latest

The API key is a way to identify and authenticate a user of the service, allowing APIs to pull up user-
specific data. For an API serving general information like News API, an API key is mostly useful in
identifying the user’s level of access.

Generally, the API key is passed through the HT'TP request’s header - a list of key-value pairs that is sent
with our request. What goes in the header depends on the particular API being used. The documentation
should always specify what kind of things should be put in the header to correctly get information.

https://newsapi.org/#documentation

3.0 Stock Ticker 73

In the news flash code, the headers only contain the {'X-API-KEY':<API KEY>} pair.

The body is typically a JSON list of key-value pairs used to store content for ‘POST’ requests. Again,
the specifics of the body depends on what the API needs.

Stock Ticker

For this project, we’ll be obtaining the latest stock data from an online API for a configuratble list of
stocks and displaying the data:

$897
$46.17 - 0.45%

Disclaimer: It’s important to note that most stock data APIs provide data that is delayed
and does not represent the latest information. Use this project for informational purposes
only, it is not meant to offer any investment advice. Onion is not responsible for any
investment decisions or their outcomes, please invest responsibly.

Overview

Skill Level: Beginner

Time Required: 10 minutes

74 Chapter 3. OLED Expansion Projects

This code will be written in Python and we’ll be making use of a Google Finance API to grab stock data.
It will print the following data to the OLED:

1. Date and time (UTC)

2. Stock symbol (up to 4 characters)
3. Current trading price (USD)

4. Percentage change since last closing

Specifically, the code uses the info endpoint; this is technically deprecated, but still seems to remain
active and returns up-to-date finance data.

We also use the Onion’s py0ledExp module to provide control of the OLED Expansion.

The complete project code can be found in Onion’s oled-stock-ticker repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
e Onion OLED Expansion

Step-by-Step

Follow these instructions to set this project up on your very own Omega!

1. Prepare

You’ll have to have an Omega?2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

Once that’s done, plug in your OLED Expansion:

2. Install Python and Git

Connect to the Omega’s command line and install Python as well as some of the packages we need:

https://www.google.com/finance
https://groups.google.com/forum/#!topic/google-finance-apis/q-DbjbzQDGQ
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://github.com/OnionIoT/oled-stock-ticker
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html

3.0 Stock Ticker 75

opkg update
opkg install python-light python-urllib3 pyOledExp git git-http ca-bundle

The python-urllib3 package will allow us to make HTTP requests in Python, while the py0ledExp
package gives us control of the OLED Expansion.

The git, git-http, and ca-bundle packages will allow us to download the project code form GitHub.

3. Download the Project Code

The code for this project is all done and can be found in Onion’s oled-stock-ticker repo on GitHub. We’ll
use git to download the code to your Omega: navigate to the /root directory, and clone the GitHub
repo:

cd /root
git clone https://github.com/OnionIoT/oled-stock-ticker.git

4. Setup the Ticker

The config. json file holds all of the settings for the project. Populate the stocks array with the symbols
of the stocks you wish to track.

"stocks": [
"AAPL",
"GOOG",
"MSFT",
"KO",

HPEP n :
"AMZN",
"YHOO"

Some notes about the stock symbols:

e The OLED has 8 rows and the 1st will be used for the date and time, so only the first seven will be
shown.

e Due to space constraints on the OLED, the stock ticker can properly display only stocks with 4
letters or less.

e The code assumes the stocks are traded in USD.

4. Run the Code

Now run the code: python main.py

https://github.com/OnionIoT/oled-stock-ticker
https://docs.onion.io/omega2-docs/installing-and-using-git.html

76 Chapter 3. OLED Expansion Projects

If you're interested in how the py0ledExp code can be used to control the OLED Expansion, take a look
at how it’s used in the oledDriver.py file in the project code and also check out the py0OledExp Module
documentation.

6. Automate the Program to Run Periodically

The program will grab and display the latest stock info, then promptly exit. We’ll use cron, a super
useful Linux utility, to have the program run periodically.

Enter crontab -e to add a task to the cron daemon, it will open a file in vi, enter in the following:

* * x * x python /root/oled-stock-ticker/main.py
#

This assumes that your project code is located in /root/oled-stock-ticker
Now, we’ll restart cron:
/etc/init.d/cron restart

And the code will run once every minute, generating literally up-to-the-minute stock information on your
OLED!

https://github.com/OnionIoT/oled-stock-ticker/blob/master/oledDriver.py
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html

3.0 Stock Ticker 77

Again, remember that the stock information is likely delayed data and shouldn’t be used to
inform investment decisions!

Check out the Omega documentation for more info on using cron

Code Highlight

This code does the following;:

Load the list of stocks from the configuration file

Creates a timestamp of when this script was called

Sends a GET request with the given stocks to the Google Finance API

Cleans up and stores the response into a variable

Formats relevant information such as symbol and price for displaying on the OLED
Prints the timestamp and stock information to the OLED

SO W=

Going Further
You can customize the formatting or which information you want to display on the OLED by changing
the formatGoogleStockInfo() function in stocks.py.

To see all of the available information, query the API for a single stock by running stocks.py and the
symbol as the first argument:

python stocks.py BB

L
{
"c": "+0.01",
"ccol": "chg",
"e": "TSE",
"1tt": "4:00PM EDT",
"cp_fix": "0.09",
"c_fix": "0.01",
"1": "10.64",
"s": "O",
"1t": "Apr 6, 4:00PM EDT",
"pcls_fix": "10.63",
"t": "BB",
"1t_dts": "2017-04-06T16:00:00Z2",
"1_fix": "10.64",
"cp": "0.09",
"id": "674819",
"1l_cur": "CA$10.64"
}
]

Add any information that’s relevant to you to the data that’s displayed on the OLED screen. Keep in
mind that the screen can display 21 characters per line, any additional characters will be automatically
relegated to the next line.

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html

78 Chapter 3. OLED Expansion Projects

Twitter Feed Display

For this project, we’ll be displaying the latest Tweet of a specified Twitter user on the OLED Expansion:

d0nionloT:

RT oTim__Brooks: This
is an awesome #IoT m
aker kit from the a0n
ionloT - no kidding,

I’'m imPressed., Uorth

Overview

Skill Level: Beginner
Time Required: 20 minutes

The code will be written in Python and we’ll be making use of Twitter’s REST APIs to grab Tweet data.
Specifically, the code uses the statuses/user_timeline endpoint. Also in use is Onion’s pyOledExp
module to provide control of the OLED Expansion.

The complete project code can be found in Onion’s oled-twitter-display repo on GitHub.

https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/reference/get/statuses/user_timeline
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://github.com/OnionIoT/oled-twitter-display

3.0 Twitter Feed Display 79

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
e Onion OLED Expansion

Step-by-Step

Follow these instructions to set this project up on your very own Omega!

1. Prepare

You’ll have to have an Omega?2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

Once that’s done, plug in your OLED Expansion:

2. Install Python

Connect to the Omega’s command line and install Python as well as some of the packages we need:

opkg update
opkg install python-light python-urllib3 pyOledExp

The python-urllib3 package will allow us to make HTTP requests in Python, while the py0ledExp
package gives us control of the OLED Expansion.

3. Download the Project Code

The code for this project is all done and can be found in Onion’s oled-twitter-display repo on GitHub.
Follow the instructions on installing Git, navigate to the /root directory on the Omega, and clone the
GitHub repo:

cd /root
git clone https://github.com/OnionIoT/oled-twitter-display.git

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://github.com/OnionIoT/oled-twitter-display
https://docs.onion.io/omega2-docs/installing-and-using-git.html

80 Chapter 3. OLED Expansion Projects

If you’re in a hurry, we can download the code directly and avoid installing git. Run the
following:

mkdir /root/oled-twitter-display

cd /root/oled-twitter-display

wget https://raw.githubusercontent.com/OnionIoT/oled-twitter-display/master/oledTwitterDispl
wget https://raw.githubusercontent.com/OnionIoT/oled-twitter-display/master/config. json

We can do this direct download since this GitHub repo is public.

4. Create a Twitter Application

WEe’ll need to create a Twitter Application in order to be able to use Twitter’s APIs to grab Tweets.
Specifically, our code needs an API Key and API Secret in order to authenticate with Twitter before we
can use the APIs:

® ® ® Twitter Application Manager: X

&« C | & Secure https://apps.twitter.com

W Application Management
A v e ST ———

Twitter Apps

1. Head over to https://apps.twitter.com and sign in with your Twitter handle

2. Fill in the form details for your application. It doesn’t really matter what you type in, but a solid
name and description goes a long way when you come back to a project after months away from it.

https://apps.twitter.com

3.0 Twitter Feed Display 81

©®® /'y creatoan applcation | Twitte: x |\ Lazar
&« C | & Secure https;, i h % QOaAaoYyY ;|
|
W Application Management H-

Create an application

Application Details
Name *
Omega Twitter Reader

Your appiication name. This Is used to attribute the source of a tweet and In user-facing authorization screens. 32 characters max.

Description *
Reading the latest Tweet from a specified user

Your application description, which will be shown In user-facing authorization screens. Between 10 and 200 characters max.

Website *

https://onion.io

Your application’s publicly accessitie home page, where users can go to download, make use o, o find out more about your This fully-quatfied URL is used in the
source attribution for tweets croated by your appiication and will be shown in user-facing authorization scroens.
(you don't have a URL yet, just put a placeholder here but remember to change it later)

Callback URL

3. Read and agree to the Twitter Developer Agreement and hit Create your Twitter application.

LN J /»' Create an application | Twitte x\-\‘y A Lazar
€ C | @ Secure https:// i * Qa@QO0Y

Your application description, which will be shown In user-facing authorization screans. Between 10 and 200 characters max.

Website *
https://onion.io

Your appiication’s publicly accessible home page, where users can go to download, make use of, or find out more about your This fully-quaitied URL Is used in the
source attribution for tweets created by your appiication and will be shown in user-facing authorization scroens.
(i you don't have a URL yet, just put a placeholder here but remember to change t later)

Callback URL

Where shouid we return after QAuth 1.0a it should explicitly specify thelr cauth_caliback URL on the request token step, regardiess of the value
given here. To restrict your appiication from using caiibacks, leave this flefd biank.

Developer Agreement
£ Yes, | have read and agree to the Twitter Developer Agreement.

Create your Twitter application

Note that your Twitter account must have an associated mobile phone number before
Twitter will allow you to create an application!

82

Chapter 3. OLED Expansion Projects

4. Your Application is now created!

® ® ® 'y Omega Twitter Reader | Twitt x

C | & Secure https://apps.twitter.com/app/13628440

W Application Management

Your application has been created. Please take a moment to review and adjust your application's settings.

Omega Twitter Reader e

Details Settings Keys and Access Tokens Permissions

Reading the latest Tweet from a specified user
https://onion.lo

Organization

nformation about the [
Organization None
Organization website None

Application Settings
Your applicat Sonsumer Key and {o authenticate requests [

Access level Read and write (modify app per

missions)

® ® ® 'y Omega Twitter Reader | Twiti: X

&« C | & Secure https://apps.twitter.com/app/13628440/keys

‘ W Application Management

Omega Twitter R

Detaiis Settings Keys and Access Tokens
Application Settings

Consumer Key (APl Key) 170005 N
Consumer Secret (API Secret) Ny

Access Level Read and write (modify
Owner =
Owner ID —

Application Actions

Regenerate Consumer Key and Secret C

5. Head over to the Keys and Access Tokens tab to grab the info we need

5. Setup and Run the Code

The config. json file holds all of the settings for the project. Populate the authorization object with
the Consumer Key and Consumer Secret from the Twitter app.

And then populate application.user with the Twitter handle whose latest tweet you want to be shown

3.0 Twitter Feed Display 83

on the OLED Expansion:

root@0mega-A7A9:~/0led-twitter-display# cat config.json

{
“application”: {

“user": "OnionIoT"

3,

"authorization": {
"consumerKey": "1
"consumerSecret":

ng

Now run the code: python oledTwitterDisplay.py

. dCOWO PO

ad0nionloT:

RT aﬁu__erooks This
is an awesome #IoT m

aker kit from the
ionloT - no kidding,
I’m imPressed. Uorth

BUIYD UL Bpel ZyDINO-dAVZ I 204

oruoo//sdny
uouQ Ag pausisag

If you’re interested in how the py0ledExp code can be used to control the OLED Expansion, take a look
at how it’s used in the project code and also check out the py0ledExp Module documentation.

https://github.com/OnionIoT/oled-twitter-display/blob/master/oledTwitterDisplay.py
https://docs.onion.io/omega2-docs/oled-expansion-python-module.html

34 Chapter 3. OLED Expansion Projects

6. Automate the Program to Run Periodically

The program will grab and display the latest Tweet, and then promptly exit. We’ll use cron, a super
useful Linux utility, to have the program run periodically.

Enter crontab -e to add a task to the cron daemon, it will open a file in vi, enter in the following:

*/6 * * x % python /root/oled-twitter-display/oledTwitterDisplay.py
#

This assumes that your project code is located in /root/oled-twitter-display
Now, we’ll restart cron:
/etc/init.d/cron restart
And the code will run once every 5 minutes, updating the Tweet shown on your OLED.

Check out the Omega documentation for more info on using cron

Code Highlight

All of Twitter’s API endpoints require authentication, so that will be the first task of our program.
Luckily, Twitter provides Application-Only Authentication, which is why we had to create our own Twitter
Application in Step 4 above. Application-Only Authentication is great for a few reasons:

e Your program doesn’t include your Twitter username and password

o It allows restricting access, so the application can view/modify only certain things

o The API Key and API Secret (also referred to as Consumer Key and Consumer Secret) can be
regenerated if compromised

From a high-level, the twitterApiAuthenticate() function in the code does an HT'TP POST request
to https://api.twitter.com/oauth2/token with the header containing the base64 encoded Consumer
Key and Secret for our application. If the provided Key and Secret are valid, the response will include a
Bearer Token. The returned Bearer Token is set to a global variable, and is then used for authorization
in the headers of every subsequent request to Twitter’s API.

This is a very common authentication practise, see Twitter’s Authentication documentation for more
details

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html
https://dev.twitter.com/oauth/application-only
https://dev.twitter.com/oauth/application-only

4 IoT Projects

As an IoT computer, the Omega2 really shines when used for IoT projects. The combination of the
Omega’s small form factor, low power draw, processing and networking capabilities, and the flexibility that
comes from running Linux make it ideal for the type of connected and intelligent applications associated
with IoT.

Use your Omega to easily add intelligence to everyday objects or existing technology:

and connect them to cloud-based IoT platforms:

86 Chapter 4. loT Projects

Weather Station Vv

{8} History . {8} Current

5minutes + -

Thereby allowing you to monitor and control your new smart item or device, regardless of your location.
This opens the door to creating some really interesting devices in your very own home, school, or workplace.

Concepts

A highlight of some of the concepts that will be covered in these projects:

e Controlling a webcam

e Generating video from many still images

o Interfacing with an online calendar service

o Acquiring data from analog sensors with the Arduino Dock

e Controlling various attached electronics components and hardware

e Powering the Omega and external, higher voltage components with a single power supply
o Installing additional Python modules

o Adding internet connectivity to existing devices to extend their utility

e Sending data to the IBM Watson IoT platform

o Interfacing with the Losant IoT Platform; sending data and receiving commands
o Using cgi to create quickly create endpoints on the Omega

Projects

IoT projects for the Omega2 IoT Computer:

1. Weather Station
e Report collected temperature and humidity data to IBM’s Watson IoT Platform
2. Time-Lapse Camera
o Create awesome timelapse videos with your Omega by taking photos at a regular interval and
then stitching them together into a video
3. Alarms based on an Online Calendar

4.0 Weather Station 87

e Create an event on your online calendar and your Omega will buzz to remind you
4. Thermal Printer
1. Your very own Thermal Printer
e Wire up a thermal printer and print from your browser
2. A Compact Version
e Put your soldering skills to use and setup a really compact thermal printer
5. Smart Plant
1. Measure Plant Data
o Add smarts to your plant by measuring its soil moisture level
2. Visualizing Plant Data
e Send plant data to the Losant IoT Platform and check in on your plant from anywhere by
looking at the nicely visualized data
3. Twitter Alerts
e Update the Losant workflow to notify you with a Tweet when your plant needs watering
4. Automatic Plant Watering
¢ Add a water pump to your setup and update the Losant workflow to automatically water
your plant when it needs watering
5. A Single Power Supply
o Update the smart plant setup so the Omega and pump can be powered with a single supply
6. Temperature-Based Smart Fan
e Cool stuff down by spinning up a fan based on temperature readings
7. IoT Lock
1. On your Local Network
e Wire up an electric lock and control it from a browser on your local network
2. Control the lock with a Tweet
o Add to the IoT lock to allow authorized Twitter users to control the lock with specific
hashtags in a Tweet

Weather Station

This project will show you how to collect temperature and humidity data from a DHT?22 sensor and send
it to IBM’s Watson IoT Platform, where you can view it on the web!

https://www.ibm.com/internet-of-things/platform/watson-iot-platform/

38 Chapter 4. loT Projects

Weather Station Vv

{8} History . {8} Current

5 minutes

Overview

Skill Level: Intermediate
Time Required: 40 minutes

We’ll be using the Arduino Dock to read the temperature and humidity data from the DHT22 sensor since
the on-board microcontroller will make this a breeze. On the Omega side, we’ll use the Python pySerial
module to periodically send commands to the Arduino Dock and trigger a response with the sensor data.
The Omega will then read that data back and send it to IBM Watson, where you can visualize the data
in real time! We will then automate the project to run automatically when the Omega is turned on.

The device code can be found in Onion’s iot-weather-station repo on GitHub, while the Arduino Dock
sketch can be found in the Examples of the Onion Arduino Library.

Ingredients

Onion Omega2+
— or Omega2 standard booting from a USB storage device with at least 16 MB of free memory;
see Booting From External Storage
— For convenience, this tutorial will assume you are using an Omega2-+.
e Omnion Arduino Dock 2
e Breadboard
e DHT22 temperature + humidity sensor
o 10kSQ resistor
e M-M jumper wires
o (Optional) M-F jumper wires

https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://github.com/OnionIoT/iot-weather-station
https://github.com/OnionIoT/Onion-Arduino-Library
https://onion.io/store/omega2p/
https://onion.io/store/omega2/
https://docs.onion.io/omega2-docs/boot-from-external-storage.html
https://onion.io/store/arduino-dock-r2/
https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B01IT2E4ZW/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01IT2E4ZW&linkId=31db761a1d9125f7cb15120e7496d697
https://www.amazon.com/gp/product/B016NXK6QK/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B016NXK6QK&linkId=62595ffef640175ce3a3b44fabd712e4
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde

4.0 Weather Station 89

Step-by-Step

Follow these instructions to setup the Weather Station project on your very own Omega!

1. Prepare

You’ll have to have an Omega2+ ready to go, complete the First Time Setup Guide to connect your
Omega to WiFi and update to the latest firmware.

Note 1: The Arduino Dock does not have a USB to serial converter chip, so all connections to the
Omega’s command line must be done over SSH.

Note 2: The Omega’s firmware along with this project and its dependencies will require approximately
18 MB of storage space. If you wish to install apps on the Console such as the Editor, we recommend
booting the filesystem from an external SD card or USB drive.

After completing the first time setup, follow the steps in the Arduino Dock guide to prepare it for flashing
Arduino sketches.

2. Wire Up the Sensor

We will treat the side of the DHT sensor with the holes as the front.

1. Insert the DHT sensor into the breadboard with the front facing the middle gap.
e The pins will be numbered 1-4 from left to right.

2. Connect Vdd (pin 1) to the Arduino Dock’s 5V pin.

3. Connect DATA (pin 2) to the Arduino Dock’s digital pin 2.

4. Connect GND (pin 4) to one of the Arduino’s GND pins.
e This is not a typo. Pin 3 is unused on this DHT sensor!

5. Connect the 10k resistor across Vdd and DATA.

Your setup should look something like this:

https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://docs.onion.io/omega2-docs/boot-from-external-storage.html
https://docs.onion.io/omega2-docs/flash-arduino-dock-wirelessly.html

90 Chapter 4. loT Projects

In the above setup, two 5.1k{) resistors were used in series to achieve the 10kQ2 pullup.

Optional - Remove the DHT sensor from the breadboard, and use the M-F jumper wires to connect the
pins back to the breadboard. This is so you can easily move the sensor around!

4.0 Weather Station 91

3. Download the Project Code on the Omega
The code for this project can be found in Onion’s iot-weather-station repo on GitHub. We'll first need to
connect to the Omega’s command line and install the packages we need for git:

opkg update
opkg install git git-http ca-bundle

Then we’ll use git to download the project code to your Omega:

cd /root
git clone https://github.com/OnionloT/iot-weather-station.git

Now enter the repo directory and run install.sh to install the required packages and dependencies:

cd iot-weather-station
sh install.sh

This may take several minutes, go grab a drink or a quick snack!

The install.sh script will install Python and the additional modules needed to communicate
with the Watson IoT platform. Specifically, it will install Python and PIP, the Python package
manager. Then, it will use PIP to install IBM’s ibmiotf module and all of it’s dependencies.

https://github.com/OnionIoT/iot-weather-station
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://docs.onion.io/omega2-docs/installing-and-using-git.html

92 Chapter 4. loT Projects

4. Find your Omega’s MAC Address

Then get the Omega’s MAC address for use with Watson by running the watsonHelper.py script:
python watsonHelper.py

You will see output that looks something like this:

root@0mega-2729:~/iot-weather-station# python watsonHelper.py

Device ID:
42a36b002729

Loaded Device ID into device.cfg.
Enter this Device ID on the IBM Bluemix website when registering this device on the Watson IoT platform.
Don't forget to add your Organization ID, Device Type, and Authorization Token to the device.cfg file!

Copy or write down the MAC address underneath “Device ID” for later.

5. Arduino IDE Setup

If you don’t already have it, install the Arduino IDE on your computer. Once you’re in the Arduino IDE,
install the Adafruit Unified Sensor and DHT sensor library libraries from the Library Manager by
following this guide guide on the Arduino website.

Then you’ll need to install the Onion Arduino Library by doing the following:

1. In your web browser, download the Onion Arduino Library ZIP file.
2. Install the ZIP library by following the instructions in the Arduino Library Installation guide.
3. Restart your Arduino IDE to reload the library.

Finally, follow our Arduino Dock setup instructions to setup the Arduino IDE to wirelessly flash the
Arduino Dock 2.

6. Flash the Arduino Dock’s Microcontroller

Flash the weather station sketch to the Arduino Dock by doing the following:

1. Click on File > Examples > Onion > weatherStation to open the weather station sketch.
2. Flash it to the Arduino Dock by following the instructions in the Arduino Dock guide.

This sketch will read the temperature and humidity measurements from the DHT22 sensor and will
transmit the value via serial of the correct command is received from the other end. So the Omega will
have to issue a command through UART1, in this case, the command is just the r character, and it will
then receive a JSON-formatted string of the sensor data as a response.

7. Setup the Omega on the IBM Watson IoT Platform

We will be using IBM’s guide on registering devices in Watson as a reference for this section. Open the
link in your web browser and refer to the additional information that we have provided for each step
below.

If you're having difficulties in this section, follow these two developer recipes to become familiar with the
Watson web interface:

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/Libraries
https://github.com/OnionIoT/Onion-Arduino-Library/raw/master/Onion-Arduino-Library.zip
https://www.arduino.cc/en/Guide/Libraries#toc4
https://docs.onion.io/omega2-docs/flash-arduino-dock-wirelessly.html
https://docs.onion.io/omega2-docs/flash-arduino-dock-wirelessly.html
https://developer.ibm.com/recipes/tutorials/how-to-register-devices-in-ibm-iot-foundation/

4.0 Weather Station 93

e Connect an Onion Omega2 to IBM Watson IoT Platform
e How to Register Devices in IBM Watson IoT Platform

Step 1 - Introduction

e You can register for an IBM Bluemix account here.

Step 2 - Create IBM Watson IoT Platform Organization

e You can call the service “Onion IoT”, “Watson IoT”, or whatever you like.

Step 3 - Create Device Type
e Call the device type omega.
— The description can be something like “Onion Omega IoT board”.
e In the Define Template substep on the Watson website, check off only the Model attribute.
o In Submit Information, enter omega2 for the Model.

— New devices by default will have this value for their Model attribute unless you specify some-
thing else.

¢ You can leave Metadata blank.

Step 4 - Add Device in IBM Watson IoT Platform

e When adding a device, choose the omega device type we just created.

e In the Device Info substep, enter the Device ID that we got from the watsonHelper.py helper script
a few steps back.

e You can leave the Model field blank and it will automatically fill it in with omega2.

e You can leave the Metadata field blank.

e In Security, we recommend letting Watson automatically generate an authentication token for you.
Click on Next without entering anything.

e In the Summary substep, review that your information is correct, then click Add.

https://developer.ibm.com/recipes/tutorials/connect-an-onion-omega2-to-ibm-watson-iot-platform/
https://developer.ibm.com/recipes/tutorials/how-to-register-devices-in-ibm-iot-foundation/
https://console.ng.bluemix.net/registration/

94

Chapter 4. loT Projects

Add Device

Summary

®

Please check that a

Device Type omega

Device ID

Serial Number
Manufacturer
Model

Class

Description
Firmware Version
Hardware Version

Descriptive Location

Authentication Token

submitted information for this device is correct before adding this device.

1234abcd5678

To be generated

You should see a card containing your Organization ID, Device ID, and more. Don’t close this card until
you've recorded the token somewhere, because there’s no way to view the authentication token for this
device again! Take a look at the sample card below:

Organization ID
Device Type

Device ID
Authentication Method
Authentication Token

ymbj88

omega

1234abcd5678

token
10v6PXMIeH29L&86!E

On the Omega, open the device.cfg file for editing and replace the placeholders in ALLCAPS with the

information in the fields above

like so:

Watson Website device.cfg
Organization 1D YOURORG
Device ID YOURDEVICEID

Authentication Token YOURTOKEN

4.0 Weather Station 95

Remaining steps

“Step 5 - Generate API Keys” and onwards are not necessary for this project.

8. Set Up Visualization Boards and Cards on Watson

Follow the steps in IBM’s guide to configuring cards in Watson with the additional information we have
provided below:

Step 2 - Overview to Boards & Cards

e You can make your own board to show the collected data from the sensor. In this example, we’ve
called it Weather Station.

Step 3 - Realtime Data Visualization

o First create a line chart card according to the guide.
e When connecting data sets, set weather as the Event.
o Create a data set for temperature following the example below:

https://developer.ibm.com/recipes/tutorials/configuring-the-cards-in-the-new-watson-iot-dashboard/

96 Chapter 4. loT Projects

Edit Line chart Card

Connect data set

temperature o=

Event

weather

Property

temperature

Name

temperature

Type Unit

Number = °c

Min Max

-100 200 -

e Repeat for humidity by replacing all instances of temperature with humidity.
e We recommend using an XL line chart size to be able to see enough data over time.
o Set the title to “History”

You can also add a Value card to clearly display the most recent measurement values.

e When adding the card, click on “Value” as the type.
e Use a M size chart to display both temperature and humidity at the same time.
e You can set the title of this card to “Current”

4.0 Weather Station 97

Weather Station W

{o} History

5 minutes

Now you’ve got visualization set up on Watson!

9. Running the Weather Station Project

On the Omega, navigate to the iot-weather-station directory and run the main.py file:

python main.py

You should see messages being published from the command line, and new data points in your Watson
dashboard! Try placing the sensor near sources of cold or hot air, or try breathing over it to change the
relative humidity and see what happens on the dashboard.

98 Chapter 4. loT Projects

Weather Station Vv

{8} History . {8} Current

5minutes + -

10. Run the Program on Boot

We can automate this project to run when the Omega is turned on, and we can also make it run in the
background so you can use the Omega for other things while it’s running! To do this, we’ll place a script
in /etc/init.d.

In the repo folder, make the weather-station file executable, copy it to /etc/init.d, then enable it to
run on boot:

chmod +x init.d/weather-station
cp init.d/weather-station /etc/init.d
/etc/init.d/weather-station enable

Reboot the Omega, and you will see the dashboard automatically being populated with data while the
command line is available for you to use!

The /etc/init.d/weather-station script registers the Weather Station Python script as a
service with procd, the process management daemon of the system. procd then ensures that
the process gets started at boot and continues to run until the service is disabled.

Code Highlight

This project makes use of two main interfaces: the Arduino Dock and the IBM Watson IoT platform.

The Arduino Dock sketch is set to read data from the DHT sensor only when an r character is sent over
the serial bus.

if (Serial.available() > 0) {
// read the input
int inByte = Serial.read();

4.0 Time-Lapse Camera 99

delay(500); // small delay before responding

// respond only if correct command is received
if ((char)inByte == 'r') {

responder () ;

delay(delayMS) ;
X

It then sends a response in JSON.

void responder() {
// read the weather sensor
if (getWeather()) {
String temperature = String(sensorResponse.temperature);
String humidity = String(sensorResponse.humidity);

// encode output to JSON

String response = "{\"temperature\":" + temperature + ", \"humidity\":" + humidity + "}";
Serial.println(response) ;

}

else {

// send false
Serial.println("false");
}
}

JSON was chosen as it is a widely used data serialization format, and JSON parsers exist in most pro-
gramming languages. You can use this example to create your own Arduino Dock apps that can collect
data and send it back to the Omega, which can then run any programming language you like!

The IBM Watson IoT Python library is also useful for sending data to Watson from the Omega. You can

reuse the device.cfg and watsonHelper.py files in your next IoT projects!

Time-Lapse Camera

Using a webcam connected to the Omega, we can take photos over time and string them together to make
a video of your scene!

100 Chapter 4. loT Projects

> 2

p @ onion OmMegazt = -

OMOZP Designed by Onica

Mot Made n G

| coamoveai Nade OF% (€3
|

| | (A
| MAC 40A36BCOF181 3

TR R g
we s

Overview

Skill Level: Intermediate
Time Required: 30 minutes

In this project, we’ll use the fswebcam utility and cron to capture images from the webcam at timed
intervals, then we’ll convert it all to a video using ffmpeg. To keep the amount of typing to a minimum,
we will create shell scripts to do the work for us!

Ingredients

e Onion Omega2-+

Any Onion Dock with a USB host connector: Expansion Dock, Power Dock, Mini Dock, Arduino
Dock 2

Micro SD card

USB Camera

https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/mini-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://www.amazon.com/gp/product/B004S1PNAO/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004S1PNAO&linkCode=as2&tag=onion0e-20&linkId=092b6fe251a9e57f173957eef531a4dc
https://www.amazon.com/gp/product/B006JH8T3S/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B006JH8T3S&linkId=400c92059d437f5159e863810e3e8c7d

4.0 Time-Lapse Camera 101

.
209

Step-by-Step

Follow these instructions create sweet time-lapse videos with a webcam on your Omega2+!

All of the code can be found in Onion’s timelapse-camera repo on GitHub.

1. Get the Hardware Ready

You’ll have to have an Omega2+ ready to go, complete the First Time Setup Guide to connect your
Omega to WiFi and update to the latest firmware.

Insert the MicroSD card, plug in the USB webcam, connect the Omega to power, and we're ready to
start.

https://github.com/OnionIoT/timelapse-camera
https://docs.onion.io/omega2-docs/first-time-setup.html

102

Chapter 4. loT Projects

Modet

2. Prepare an External Storage Device

| @orion Ornegz2* -
- wm il

oMoz Designed
ZAVP-OMEGA2 Made in China
hps/forionio

The pictures taken with the webcam would fill up the Omega’s built-instorage quite quickly. To make
sure we have enough space for our pictures, we’ll need a MicroSD card to store it all.

Connect to the Omega’s Command line and use df -h to check the storage on the Omega - and make

sure we're using the correct device.

root@Omega-F181:~# df -h

Filesystem Size
/dev/root 5.5M
tmpfs 61.4M
/dev/mtdblock6 25.1M
overlayfs:/overlay 25.1M
tmpfs 512.0K
/dev/mmcblkOp4 1.8G

Used
5.5M
84.0K
756.0K
756.0K
0
652.5M

Available Use) Mounted on
0 100% /rom
61.34 0% /tmp
24.3M 3% /overlay
24 .3M 3% /
512.0K 0% /dev
1.2G 35% /tmp/run/mountd/mmcblkOp4

Here, the last line shows the MicroSD card is successfully mounted under /tmp/run/mountd/mmcblkOp4

Now that we’re sure where the MicroSD card is, let’s create a soft-link to it for easy access:

1n -s /tmp/run/mountd/mmcblkOpl /root/sd

mkdir sd/timelapse

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html

4.0 Time-Lapse Camera 103

A soft-link is the Linux equivalent of a shortcut. It is just a file that contains a ref-
erence to another file or directory. In this case, /root/sd contains a reference to
/tmp/run/mountd/mmcblkOp1

3. Install Webcam Software

To get the webcam to take pictures, we’ll need the software.

The package we use here isn’t included in the Onion package repo so we’ll have to use the LEDE package
repo to get it.

Open up the source list like so:
vim /etc/opkg/distfeeds.conf
And comment/uncomment the lines so they look like this:

src/gz reboot_core http://downloads.lede-project.org/snapshots/targets/ramips/mt7688/packages
src/gz reboot_base http://downloads.lede-project.org/snapshots/packages/mipsel_24kc/base

src/gz reboot_onion http://repo.onion.io/omega2/packages

src/gz reboot_luci http://downloads.lede-project.org/snapshots/packages/mipsel_24kc/luci
src/gz reboot_packages http://downloads.lede-project.org/snapshots/packages/mipsel_24kc/packages
src/gz reboot_routing http://downloads.lede-project.org/snapshots/packages/mipsel_24kc/routing
src/gz reboot_telephony http://downloads.lede-project.org/snapshots/packages/mipsel_24kc/telep
src/gz omega2_core http://repo.onion.io/omega2/packages/core

src/gz omega2_base http://repo.onion.io/omega2/packages/base

src/gz omega2_packages http://repo.onion.io/omega2/packages/packages

src/gz omega2_onion http://repo.onion.io/omega2/packages/onion

A complete guide on how to do so can be found in our guide on Using Opkg.

Next, we’ll run opkg update so the changes take effect and then we can go ahead and install the fswebcam
package:

opkg update
opkg install fswebcam

4. Take a Photo

The fswebcam utility lets us take a photo with a webcam with the following command:
fswebcam --no-banner -r 1280x720 “date +"%Y-Y%m-%d_%HAMAS"™.jpg

If you’re wondering how we have date +"%Y-Ym-%d_%H%M%S"/ as the output name of the file
but it ends up being the date and time, it’s through the wonders of command substitution!
The command inside the backticks, ¢, will be executed and replaced with the output of the
command, and then the rest of the fswebcam command will be executed. Try running date
+"Y-Ym-%d_%H%M%AS" on the command line, you’ll see that it outputs the time and date in
the same format as the images get named.

5. Script it to save our fingers

To save us from typing that out every time, we’ll write a short script.

https://docs.onion.io/omega2-docs/using-opkg.html#using-opkg-switch-to-lede-repos

104 Chapter 4. loT Projects

Save the code below to /root/snapshot.sh:

#!/bin/sh

fswebcam --no-banner -r 1280x720 /root/sd/timelapse/ date +"%Y-Ym-%d_%HAM"".jpg
Make the file executable with chmod:

cd /root
chmod +x snapshot.sh

6. Automate it

WEe’ll use cron to automate the capture image script. cron is a utility that will repeatedly execute some
command at set times. Here’s a quick overview of how cron’s syntax works:

* * x * x command to execute

month (1 - 12)
day of month (1 - 31)
hour (0 - 23)
min (0 - 59)

#

#

#

#

day of week (0 - 7) (0 to 6 are Sunday to Saturday, or use names; 7 is Sunday, the s
#

#

#

#

To set up a new task - called a cronjob - we’ll need to edit cron’s configuration file with:
crontab -e

This opens an editor (by default, vim) to edit the file.

To create a cronjob, append the following to the crontab:

#take snapshot once a minute
* * * * * /root/snapshot.sh
#

For our new cronjob to take effect, restart the cron daemon with:
/etc/init.d/cron restart

Now wait a bit, if new files are created each minute, then we’re good to move on!

4.0 Time-Lapse Camera 105

& @® 1. screen

root@mega-F181:/tmp/run/mountd/mmcblk@p4/timelapse# 1s
2017-04-06_171107.jpg 2017-04-06_171223.jpg 2017-04-06_174900.jpg
2017-04-06_171140.jpg 2017-04-06_171227.jpg 2017-04-06_175000.jpg
2017-04-06_171145.jpg 2017-04-06_173135.jpg 2017-04-06_175109. jpg
2017-04-06_171216.jpg 2017-04-06_174405. jpg
root@mega-F181:/tmp/run/mountd/mmcblk@p4/timelapse# I

Check out the Omega documentation for more info on using cron

7. Set up FFmpeg

Once cron starts working and we have some images from the webcam, we’ll want to create our very first
timelapse video. To do that we’ll be using the FFmpeg program.

First, grab the package:

opkg update
opkg install ffmpeg

Next, we’ll use a script to rename the photos and create the video. Renaming first makes sending the
files to FFmpeg a lot easier.

Copy the code below and save it to /root/makevideo.sh.

#!/bin/sh
cd /root/sd/timelapse

rename images to be sequential (according to time)

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html

106 Chapter 4. loT Projects

a=1
for i in “1s -tv *.jpg’; do
new=$(printf "Y%d.jpg" "$a") #04 pad to length of 4

mnv —-— ll$i" Il$newll
let a=a+l
done

call ffmpeg to create our video
ffmpeg -r 6 -start_number 1 -i %d.jpg -s 1280x720 -q:v 1 “date +"%Y-Ym-%d_%H%M/S" ™ .mpd

Here’s the options we used for ffmpeg and what they do:

Option Effect Accepted format Our input
-T Frame rate of the output integer 6

-start_ number Number the sequence of files start with integer 1

-i Input files List of file names %d.jpg

-s Resolution of the output Width x Length 1280x720
-q:v Quality of video integer between 1~31 (1 is highest quality) 1

8. Making the Timelapse Video

Almost there!

Let’s make the script executable so we don’t have to call sh every time we want to make the video:
chmod +x /root/makevideo.sh

To make the video, we directly call the script:

/root/makevideo.sh

Voila! A time-lapsed video of the photos your webcam was taking!

Bonus points: Accessing the Images through a Browser

Link the images to the web directory of the Omega, and uhttpd will automatically serve them up.
1n -s /tmp/run/mountd/mmcblkOp4/timelapse /www/timelapse

To get to our images, go to http://omega-abced/timelapse in your browser. Remeber to replace omega-abcd
with your Omega’s unique name!

http://omega-abcd/timelapse

4.0 Alarms based on an Online Calendar 107

e ® [Index of jtimelapse/ X Onion

< C ® omega-f181.local/timelapse/ | B

Index of /timelapse/

1./
modified: Thu, 01 Jan 1970 00:00:00 GMT
directory - 4.00 kbyte

2.2017-04-06_1710.jpg
modified: Thu, 06 Apr 2017 17:10:33 GMT

image/jpeg - 67.89 kbyte

3.2017-04. 171107.j
modified: Thu, 06 Apr 2017 17:11:12 GMT
image/jpeg - 67.84 kbyte

4.2017-04 171140
modified: Thu, 06 Apr 2017 17:11:44 GMT
image/jpeg - 69.35 kbyte

5.2017-04-06 171145.j
modified: Thu, 06 Apr 2017 17:11:50 GMT
image/jpeg - 88.64 kbyte

6.2017-04-06 171216.jpg
modified: Thu, 06 Apr 2017 17:12:20 GMT
image/jpeg - 84.66 kbyte

7.2017-04-06 171223.jpg
modified: Thu, 06 Apr 2017 17:12:27 GMT
image/jpeg - 86.70 kbyte

8.2017-04-06 171227.jpg
modified: Thu, 06 Apr 2017 17:12:31 GMT

Alarms based on an Online Calendar

This project will create a real-world alarm clock that can be setup from an online calendar of your choice.
Just create a calendar event with a specific word in it, and your Omega will act as an alarm based on the
event’s time and date.

108 Chapter 4. loT Projects

Overview

Skill Level: Intermediate
Time Required: 30 minutes

This project requires an online calendar source in addition to the ingredients below. We’ll be using Google
calendar in our Step-By-Step, but you can pick any compatible iCalendar source.

The complete project code can be found in Onion’s iot-gcal-alarm repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+

e Any Onion Dock that exposes the Omega’s GPIOs: Expansion Dock, Power Dock, Arduino Dock
2, Breadboard Dock

o A breadboard (optional, but recommended)

e 1x 10012 Resistor

o DBuzzer

o 2x Jumper wires (M-M)

https://github.com/OnionIoT/iot-gcal-alarm
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/breadboard-dock/
https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B016NXK6QK/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B016NXK6QK&linkId=62595ffef640175ce3a3b44fabd712e4
https://www.amazon.com/gp/product/B00B0Q4KKO/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00B0Q4KKO&linkId=06d672e91c51ae613a03d86dad1e3834
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde

4.0 Alarms based on an Online Calendar 109

Step-by-Step

Follow these instructions to setup your very own alarm!

1. Prepare

You’ll have to have an Omega?2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Install Required Software on the Omega

Connect to the Omega’s Command line and install Python as well as some of the packages we need:

opkg update
opkg install python python-pip git git-http ca-bundle

We'll use pip to install some additional Python module:

pip install --upgrade setuptools
pip install urllib3 python-crontab icalendar

https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh

110 Chapter 4. loT Projects

The urllib3 module will help make HTTP requests to connect to our calendar source. icalendar will
help parse the calendar data, and crontab will allow us to create and remove cron jobs for our alarm.

3. Build the Buzzer Circuit

To keep it straightforward, the buzzer will be powered directly by a GPIO. We’ll build it on our breadboard
for ease of setup. Feel free to do some soldering or electrical tape if you’d like a more compact alarm.

1. Plug the Buzzer across the channel of your breadboard.

2. Using a jumper, connect the negative end of the buzzer (the pin WITHOUT a plus sign) to a GND
pin on the expansion headers

3. Plug in a 1002 current limiting resistor across the (+) row of the buzzer and an empty row.

4. Finally, connect the resistor to GPIO1 on the Dock’s Expansion Headers

Once we’re done, it should look a little like this:

-
.........

BasssssoSSE===

essadsssss

-
PR 2 & 8 X0 L8 LA
s sssssss
" e s e sssss
s sesssses

4. Download the Project Code
The code for the Calendar Alarm can be found in Onion’s iot-gcal-alarm repo on Github. You can use
Git to clone it to your Omega:

cd /root
git clone https://github.com/OnionIoT/iot-gcal-alarm.git

https://github.com/OnionIoT/iot-gcal-alarm
https://docs.onion.io/omega2-docs/installing-and-using-git.html
https://docs.onion.io/omega2-docs/installing-and-using-git.html

4.0 Alarms based on an Online Calendar 111

Or use wget to download the three files directly to your Omega:

mkdir /root/iot-gcal-alarm
cd /root/iot-gcal-alarm
wget https://raw.githubusercontent.com/OnionIoT/iot-gcal-alarm/master/iotGcalAlarm.py https://raw

Now all of the code will be in the new /root/iot-gcal-alarm/ directory on your Omega.

5. Setting Up Your Calendar

The calendar can be any calendar you wish, but for the events to be recognized, they have to include
SET_BUZZER string in the event’s title. More specifically, the ‘SUMMARY"” field of the iCalendar event.

We’ll use a Google calendar as an example.

First, go to the settings page of your calendar:

Rys Agenda More ¥ ‘ Q v ,
Eri 4/1. Display Density:
- Comfortable
Cozy
Compact
C Settings)
Help
Labs

Send feedback

Then navigate to the ‘Calendars’ tab in the settings page. Here, click which calendar your event will be in:

112 Chapter 4. loT Projects

Onion Search Calendar n

Calendar Settings
General Calendars Mobile Setup Labs

« Back to calendar

My Calendars Calendars | can view and modify
CALENDAR

= My Calendar

= Birthdays
Displays birthdays of people in Google Contacts and optionally "Your Circles' from Google+. Also displays anniversary and other event dates from
Google Contacts, if applicable.

= Reminders

The green ‘ICAL’ button next to ‘Private Address’ will be a direct link to your up-to-date calendar
in the .ics format - this is it! To get the link, right click, and hit the ‘Copy Link Location’ button.

4.0 Alarms based on an Online Calendar

113

Organization:

Description:

Location:

Calendar Time Zone:

Embed This Calendar

Embed this calendar in your website or blog by pasting
this code into your web page. To embed multiple
calendars, click on the Customize Link

Calendar Address:
Learn more
Change sharing settings

Private Address:
Learn more

Export Calendar:
Learn more

Delete calendar:
Learn more

« Back to calendar Save Cancel

Onion Corporation

e.g. "San Francisco” or "New York

This calendar uses your current tii

LSS LIS (Calendar ID: jamu

This is the address for your calent

REeset Private URLs
5 private address for this

Export this calendar
Export: All events in this calendar

Delete all events in this calendar
Delete: All events in this calendar

Open up config. json from the repo, and paste the link as the value to the “icalAddr” key - replacing

your-calendar—-address:

114 Chapter 4. loT Projects

root@0mega-F13B:~/iot-gcal-alarm# cat config.json
{

"icalAddr" : "https://calendar.google.com/calendar/ical/1 > I “/basic.ics"

}

6. Run the Code

Let’s run the code!
python /root/iot-gcal-alarm/iotGcalAlarm.py

The script will read the calendar data from your source, and add a cron job for every event in the future
with the keyword SET_BUZZER. It will also clear any cron jobs that have already been run - only for up
to a year, since cron does not keep track of year data.

7. Schedule the Code to Run Once a Day

Now we’ll use the trusty cron Linux utility to schedule the script to run once a day at midnight to update
our other cron jobs.

Run crontab -e to add the task, it will open the crontab file in vi, add the following lines:

0 0 * * * python /root/iot-gcal-alarm/iotGcalAlarm.py
#

restart the cron daemon for the changes to take effect:
/etc/init.d/cron restart

Now the iotGcalAlarm script will run every day at midnight, updating your alarms based on calendar
events that have the SET_BUZZER keyword.

Check out the Omega documentation for more info on using cron

8. Alarming!

You're all set, your Omega will now automatically set off alarms based on your calendar events!

Thermal Printer

In this project, we’ll be using the Omega to control a thermal printer via a web interface. Simply type
text in a box, and click Print to print it out in real life!

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html

4.0 Thermal Printer 115

® © ® ' [Omega Thermal Printer x\g Onion
& C ® omega-e72d.local/printer.htm ﬁ’ - [

Omega Thermal Printer

116 Chapter 4. loT Projects

Apr 12 2017

[] redesign website
[X] finish work proposal
[] reply customer email

S

Overview

Skill Level: Intermediate
Time Required: 20 minutes

This tutorial will use the Omega to control a thermal printer - most often seen at cash registers and
restaurant checkouts. We’ll be using connectors and cables that come with the printer to provide it with
power and communicate serially.

Optionally, we’ll 3D print a base to clean up the cabling and give the printer some polish.

Ingredients

e Onion Omega?2 or Omega2+
e Any Onion Dock that exposes the Omega’s GPIOs: Expansion Dock, Power Dock, Arduino Dock
2, Breadboard Dock
e Thermal Printer
— comes with a 2-pin JST power cable and a 5-pin TTL cable
e DC barrel jack adapter
e 5V 2A DC Power Supply

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/breadboard-dock/
https://www.amazon.com/gp/product/B00XW2K422/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00XW2K422&linkId=ed19204d85392906ca786c03557458dd
https://www.amazon.com/gp/product/B00ZGDF7AY/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B00ZGDF7AY&linkCode=as2&tag=onion0e-20&linkId=5d39734cc06c3916099832cb4748a245
https://www.amazon.com/gp/product/B00GUO5WUI/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00GUO5WUI&linkId=e8c01614795aeb9d078c1ea0e1940db3

4.0 Thermal Printer 117

e 3D printed base
e Male-to-Male Jumper Wires

Step-by-Step

Follow these steps to turn your Omega into a web-based printer!

1. Prepare

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Wire Up the Thermal Printer

WEe’ll be doing the following to connect the Omega to the printer:

http://www.thingiverse.com/thing:1272778
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://docs.onion.io/omega2-docs/first-time-setup.html

118 Chapter 4. loT Projects

TTL Pinout
JST Pinout

HE BOOR [
GND 5V o GND TX1
o

Let’s dive in:

First make sure the Omega is off and seated in the Expansion Dock.
Then, plug in the 2-pin power cable into the left side of the bottom of the printer above.
Route the black wire to the GND pin on the Expansion Dock headers.
Next we’ll connect the serial wires:
1. First plug one end of the 5-pin TTL cable into the socket at the bottom of the printer.
2. Using a jumper (preferably green to keep it consistent) connect the green wire pin on the TTL
connector to the UART1 TX pin on the Omega Expansion header.
3. Same goes for the yellow wire pin on the TTL connector, except this one goes to the UART1
RX pin on the Expansion Header.
4. Lastly, do the same for the black wire to the GND pin on the Expansion Dock header - we used
a breadboard intermediary in the diagram to show how the connection is supposed to go.
5. Finally, connect the red wire from the JST connector to a 5V pin on the Expansion Dock headers.

W=

Note that we used a breadboard to connect the two GND pins from the printer to a single GND
pin on the Omega. It would have been equally ok to connect the two printer GND pins to two
GND pins on the Omega.

2. Download the Project Code

The code for this project is all done and can be found in Onion’s iot-thermal-printer repo on GitHub.
First, connect to the Omega’s Command line and install git:

opkg update
opkg install git git-http ca-bundle

And then use git to download the project code to your Omega:

cd /root
git clone https://github.com/OnionIoT/iot-thermal-printer.git

https://github.com/OnionIoT/iot-thermal-printer
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://docs.onion.io/omega2-docs/installing-and-using-git.html

4.0 Thermal Printer 119

After cloning the repo, enter the repo directory and copy the contents of the www to the /www directory
on the Omega:

cd jiot-thermal-printer
cp -r www/ /

By virtue of uhttpd, the HTTP server running on the Omega, all of the files in the /www
directory will be served up as a website.

Running the Printer

1. Connect your Omega to your WiFi network, or connect your computer to the Omega’s WiFi network.

2. In a web browser, navigate to omega-ABCD.local/printer.html, where ABCD is the last 4 digits on
the sticker on the Omega.

e On some Android and PC devices, the omega-ABCD.local address doesn’t always work.

Follow our guide on finding your Omega’s [P Address and use the IP address instead of

omega-ABCD.local when connecting the web interface. It will be something along the lines of
192.168.1.109/printer.html

3. Type in text in the box in the middle of the webpage.
4. Click print to print it!

@ ® [Omega Thermal Printer X Onion

— C ® omega-e72d.local/printer.htr w| @&

Omega Thermal Printer

Apr 12 2017

[] redesign website
[X] £inish work proposal
[] reply customer email

Print!

The physical output:

https://docs.onion.io/omega2-docs/finding-omega-ip-address.html

120 Chapter 4. loT Projects

Apr 12 2017

[] redesign website
[X] finish work proposal
[] reply customer email

S

Code Highlight

This project uses the cgi-bin method to run scripts on the Omega via a web interface. In the following
line, we send the data from the text box to the script in the /cgi-bin directory using asynchronous
JavaScript (AJAX):
$.ajax({
type: "POST",
url: "/cgi-bin/print.sh",
data: $('#printContent').val().split('\n').join('\r'), // <-- We need to replace \n with \r

contentType: 'text/plain'
)

The print.sh script works like a simple API endpoint that takes data and does something with it; in
this case, sending it to the printer via serial:

#!/bin/sh

echo "Content-type: application/json"
echo nn

if ["$REQUEST_METHOD" = "POST"]; then

4.0 Thermal Printer - A Compact Version 121

read -n $CONTENT_LENGTH line
echo $line > /dev/ttyS1
feed paper
echo '' > /dev/ttyS1
fi

echo '{"success":"ok"}'

exit O

This is just one of many methods to create your own endpoints and services easily and quickly on the

Omegal

Going Further

With a little bit of wire splicing and soldering, we can make this project much more compact! Check out
the next part for more.

Thermal Printer - A Compact Version

In this project, we’ll build on the Thermal Printer Project. While the Expansion Dock definitely suits
this purpose well, we make the same thing in a very compact package using the Mini Dock and a little
bit of wire splicing and soldering.

122 Chapter 4. loT Projects

Apr 12 2017

[] redesign website
[X] finish work proposal
[1 reply customer email

VTP YTV VT T YT YT v

e aa s o

4.0 Thermal Printer - A Compact Version 123

Overview

Skill Level: Advanced
Time Required: 1 Hour

WEe’ll need a 3D printed plastic base for this project - if you have it printed out already, this will save
you some trouble. Additionally, we’ll wire up a DC barrel connector for power and wires for serial
communication with the Omega instead of powering it from the Expansion dock.

This tutorial will require you to solder a wire to one of the components on the Mini Dock. Please
familiarize yourself with proper soldering technique and safety procedures when working with soldering
irons, as there is a risk of injury due to the high heat!

If you are not comfortable soldering, try finding a friend or professional who can quickly solder it for you.
Or practice soldering wires together and then work your way up to soldering on actual electronics.

Warning: Soldering irons get really hot and can burn skin badly! Be careful and solder only if you know
what you're doing and at your own risk, Onion is not responsible for any injury or damage!

124

Chapter 4. loT Projects

Ingredients

Tools:

1.
2.
3.

Onion Omega2 or Omega2+
Onion Mini Dock
Thermal Printer
— comes with a 2-pin JST power cable and a 5-pin TTL cable
DC barrel jack adapter
5V 2A DC Power Supply
3D printed base
Male-to-Male Jumper Wires

Soldering iron + solder
Wire Strippers
Double-sided tape

Step-by-Step

Follow these steps to turn your Omega into a web-based printer!

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/mini-dock/
https://www.amazon.com/gp/product/B00XW2K422/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00XW2K422&linkId=ed19204d85392906ca786c03557458dd
https://www.amazon.com/gp/product/B00ZGDF7AY/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B00ZGDF7AY&linkCode=as2&tag=onion0e-20&linkId=5d39734cc06c3916099832cb4748a245
https://www.amazon.com/gp/product/B00GUO5WUI/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00GUO5WUI&linkId=e8c01614795aeb9d078c1ea0e1940db3
http://www.thingiverse.com/thing:1272778
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://www.amazon.com/gp/product/B01E1ISGH0/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01E1ISGH0&linkId=e645097c29c056fb4dfa5ac65716d83d
https://www.amazon.com/gp/product/B01B61TWGY/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01B61TWGY&linkId=72199c3f77442ad73fa91960051b20d2
https://www.amazon.com/gp/product/B0000302WM/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0000302WM&linkId=0163bdb27332986665ec8254b1904099
https://www.amazon.com/gp/product/B0007P5G8Y/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0007P5G8Y&linkId=b80bdba9100d68495096ae6cf4761d55

4.0 Thermal Printer - A Compact Version 125

1. 3D Print the Base

3D print the base to hold our components together. If you do not have a 3D printer available nearby,
there are online services available such as 3DHubs.

2. Install in the Power Jack

Insert the power jack adapter into the printer base. Do this first, since the other pieces will cover up the
base later.

3. Trim the Cables

Next we need to cut one end of the 5-pin TTL cable that came with the thermal printer. This is so we
can re-route the wires to where they need to go. The other end we’ll leave alone, since that goes into the
printer.

Cut only one of these ends off, leaving bare wire:

https://www.3dhubs.com/

126 Chapter 4. loT Projects

LR R

4. Assemble the Circuit

WEe’ll be doing the following to connect the Omega to the printer:

4.0 Thermal Printer - A Compact Version 127

zio -0 N e e gl‘g

. . R
) 1 C
i =)
|
a.ﬂD: a

1. Plug in the 2-pin JST power cable into the 2-pin port on the bottom of the printer.
2. Route the red and black wires to the barrel jack; make sure the red wire is connected to the Positive
(4) terminal and the black to the Negative (-) terminal.
3. Then plug the non-cut end of the 5-pin TTL cable into the 5-pin port on the printer. Route the
wires through the gap in the printer case on the right side of the USB connector.
4. Route the black, green, and yellow TTL wires to the UART pins on the Mini Dock (highlighted in
the diagram above).
o The middle pin on the printer is the printer’s serial RX (Receiving) pin, and it needs to be
connected to the Omega’s UART1 TX (Transmitting) pin
e The pin second from the right on the printer is the printer’s serial TX pin, connect it to the
Omega’s UART RX pin
e To insert the wires into the Mini Dock, you can insert the wires into the headers after you strip

128 Chapter 4. loT Projects

and twist the ends like so:
5. Then solder the red power cable to the 5V pin on the regulator on the Mini Dock as shown above.
Take care that you solder to the correct contact or you may damage your board!
e We do this tricky business because the thermal printer requires 5V to operate and the Mini
Dock
6. Insert your printer into the base from the top so that the 5-pin cable is routed through the channel
on the side of the printer.

e The wiring on the underside should like something like this:

4.0 Thermal Printer - A Compact Version 129

e How the 5-pin cable is routed:
7. If your wires are all connected, you can then flip the printer right side up.

Do not plug in the power supply just yet, as we still need to connect and solder some wires to the
Omega.

5. Connect the Omega

Plug the Omega into the Mini Dock. The Omega’s pins will push the stripped wires down into the header.
Make sure they don’t pop out during the process!

Use double-sided tape or putty to affix the Omega to the rear of the printer like so:

130 Chapter 4. loT Projects

\‘\\)l »

4.0 Thermal Printer - A Compact Version 131

Now plug in the 5V power supply into the barrel jack and turn the switch on the Mini Dock to ON.

6. Download the Code

If you've already downloaded the code in the first part of the project, your printer is ready to go so you
can skip this part!

The code for this project is all done and can be found in Onion’s iot-thermal-printer repo on GitHub.
First, connect to the Omega’s Command line and install git:

opkg update
opkg install git git-http ca-bundle

And then use git to download the project code to your Omega:

cd /root
git clone https://github.com/OnionIoT/iot-thermal-printer.git

After cloning the repo, enter the repo directory and copy the contents of the www to the /www directory
on the Omega:

cd iot-thermal-printer
cp -r www/ /

https://github.com/OnionIoT/iot-thermal-printer
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://docs.onion.io/omega2-docs/installing-and-using-git.html

132 Chapter 4. loT Projects

By virtue of uhttpd, the HTTP server running on the Omega, all of the files in the /www
directory will be served up as a website.

Using the Printer

Connect your Omega to your WiFi network, or connect your computer to the Omega’s WiFi network.

. In a web browser, navigate to omega-ABCD.local/printer.html, where ABCD is the last 4 digits on
the sticker on the Omega.

¢ On some Android and PC devices, the omega-ABCD.local address doesn’t always work.

Follow our guide on finding your Omega’s [P Address and use the IP address instead of

omega-ABCD.local when connecting the web interface. It will be something along the lines of
192.168.1.109/printer.html

3. Type text in the box in the middle of the webpage.
4. Click print to physically print it!

@ ® ™ Omega Thermal Printer X Onion

& C ©® omega-e72d.local/printer.htm w B

Omega Thermal Printer

Apr 12 2017

[] redesign website
[X] £inish work proposal
|[] reply customer email

Print!

The physical output:

https://docs.onion.io/omega2-docs/finding-omega-ip-address.html

4.0 Smart Plant - Measuring Plant Data 133

Apr 12 2017

[] redesign website
[X] finish work proposal
[1 reply customer email

“vew e RS s seesassscsaa s a s b a s sl et et Al Adl

Smart Plant - Measuring Plant Data

This is the first part of a multi-step project where we’ll make one of your plants smart! For now, we’ll
measure and display the soil moisture level of your plant.

134 Chapter 4. loT Projects

Overview

Skill Level: Beginner-Intermediate
Time Required: 45 minutes

We’ll be using the Arduino Dock to read the analog measurement from a soil moisture sensor. The code
is written in Python and makes use of the UART1 serial port on the Omega to communicate with the
Arduino Dock’s microcontroller. We’re also using Onion’s py0ledExp module to provide control of the
OLED Expansion.

The complete project code can be found in Onion’s smart-plant repo on GitHub.
In this project series, we’ll be doing the following:

1. Adding smarts to your plant by measuring it’s soil moisture level

2. Sending plant data to the Losant IoT Platform and check in on your plant from anywhere by looking
at the nicely visualized data

3. Updating the Losant workflow to notify you with a Tweet when your plant needs watering

4. Adding a water pump to your setup and update the Losant workflow to automatically water your
plant when it needs watering

5. Updating the smart plant setup so the Omega and pump can be powered with a single supply

https://docs.onion.io/omega2-docs/oled-expansion-python-module.html
https://github.com/OnionIoT/smart-plant

4.0 Smart Plant - Measuring Plant Data 135

Ingredients

e Onion Omega2 or Omega2+

e Onion Arduino Dock 2

e Onion OLED Expansion (optional but recommended)
¢ Soil Moisture Sensor

e 3x Male-to-Female Jumper Wires

ﬂ

Step-by-Step

Follow these instructions to setup the Smart Plant project on your very own Omega!

1. Prepare

You’ll need to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://www.amazon.com/gp/product/B00AFCNR3U/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00AFCNR3U&linkId=3bab7d579024c0b4b08adbf86379e3c3
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://docs.onion.io/omega2-docs/first-time-setup.html

136 Chapter 4. loT Projects

Once that’s done, plug in your OLED Expansion:

4.0 Smart Plant - Measuring Plant Data 137

2. Install Required Software on the Omega

Connect to the Omega’s command line and install Python as well as some of the packages we need:

opkg update
opkg install arduino-dock-2 python python-pyserial pyOledExp git git-http ca-bundle

The arduino-dock-2 package installs all the software required to interact with and flash the Arduino
Dock. We're also installing the python programming language and python-pyserial, a module that will
allow us to communicate with the microcontroller via the UART1 serial port.

The git, git-http, and ca-bundle packages will allow us to download the project code from GitHub.

3. Arduino IDE Setup

If you don’t already have it, install the Arduino IDE on your computer.
Then you’ll need to install the Onion Arduino Library by doing the following:

1. In your web browser, download the Onion Arduino Library ZIP file.
2. Install the ZIP library by following the instructions in the Arduino Library Installation guide.
3. Restart your Arduino IDE to reload the library.

Finally, follow our Arduino Dock setup instructions to setup the Arduino IDE to wirelessly flash the
Arduino Dock 2.

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://www.arduino.cc/en/Main/Software
https://github.com/OnionIoT/Onion-Arduino-Library/raw/master/Onion-Arduino-Library.zip
https://www.arduino.cc/en/Guide/Libraries#toc4
https://docs.onion.io/omega2-docs/flash-arduino-dock-wirelessly.html

138 Chapter 4. loT Projects

_ ®& Arduino File Edit Sketch AU Help _ r e

.00 Auto Format T k2| Arduino 1.6.6
Archive Sketch
Fix Encoding & Reload

blink2 Serial Monitor %M

#include <OnonLibrary.h> Serial Plotter oL

Board: "Arduino/Genuino Uno" >
o = /dev/cu.Bluetooth-Incoming-Port

Programmer; . AVR B /dev/cu.Bluetooth-Modem
Burn Bootloader

/dev/cu.iPhone-WirelessiAP-1

Onion® onionSetup; v Omega-1302 at 192.168.1.201 (Arduino/Genuino Uno)

/ Pin 13 has an LED connected on most Arduino boards.
/ give it a name

int ledd = 13;

int ledl = 2;

// the setup routine runs once when you press reset:
void setup() {
onionSetup = new Onion;

// initialize the digital pin as an output.
le(ledd, OUTPUT);

4. Flash the Arduino Dock’s Microcontroller

We’re going to upload one of the example sketches from the library to the microcontroller on your Arduino
Dock.

Go to File -> Examples -> Onion -> readAnalogValue

4.0 Smart Plant - Measuring Plant Data

139

X = 0O Blink|Arduino 1.6.8
File Edit Sketch Tools Help
New Ctrl+N
Open... Ctrl+0

Open Recent
Sketchbook

Examples 06.Sensars

Close Ctrl+w 07.Display
Ctrl+S 08.Strings
Ctrl+Shift+S 09.USB
Ctrl+Shift+p 10.StarterKit_BasicKit

Cerlsp 11 ArduinolSP

CtrlsComma Examplas fror Librarias

Ctrl+Q Bridge

DHT sensor library
EEPROM

// the setup funct i
188 void setup() { Ethernet
// initialize digE=fessees
pinMode (13, OUTPU

}

Robot Control
Ro:l tl] t M 0 t or

IR N = F
0

N
B

23 // the loop functio
248 void loop() {

26 delay(1000); SoftwareSerial
27 digitalwrite(13,
28 dela y (1000) =

SpacebrewYun

Temboo

Wire

RETIRED

Exarnples frorm Custorn Libraries
Arm7Bot

DueFlashStorage

GSM

LiquidCrystal

Onion

Stepper

25 digitalwrite(13, Seno GH is

blink2

readAnalogValue

SketchwithoutLibrary

weatherStation

140 Chapter 4. loT Projects

This sketch will read the signal on Analog pin A0 and will transmit the value via serial if the correct
command is received from the other end.

Select your Omega from the listed Network Ports when you open the Tools menu and then Port:

Arduino File Edit Sketch Help ., s alles *y
(8] Auto Format ®T k2 | Arduino 1.6.6
Archive Sketch
Fix Encoding & Reload
blink2 Serial Monitor %M

.8
8 0

#include <OnionLibrary.h> Serial Plotter oL
Board: "Arduino/Genuino Uno" >
Port: "Omega-1302 at 192.168.1.201 (Arduino/Genuino Uno)" >
o = /dev/cu.Bluetooth-Incoming-Port
Programmer: "AVR ISP /dev/cu.Bluetooth-Modem
Burn Bootloader /dev/cu.iPhone-WirelessiAP-1
Onion’ onton3etup; v Omega-1302 at 192.168.1.201 (Arduino/Genuino Uno)
/ Pin 13 has an LED connected on most Arduino boards.
give it a name
int ledd = 13;
int ledl = 2;
the setup routine runs once when you press reset:
void setup() {
onionSetup = new Onion;

/ initialize the digital pin as an output.
yirMode(ledd, OUTPUT);

If your Omega doesn’t show up in the list of Network Ports, run /etc/init.d/avahi-daemon
restart and it should show up in about 15 seconds.

Hit the Arrow button to upload your sketch to the Arduino Dock. It will ask for a password during the
flashing sequence, this is the Omega’s password that it’s asking for, by default it is onioneer.

See our guide on using the Arduino Dock for more details on this process.

5. Connect the Sensor

There are three connections we’ll have to make to wire up the soil moisture sensor to your Arduino:

https://docs.onion.io/omega2-docs/flash-arduino-dock-wirelessly.html

4.0 Smart Plant - Measuring Plant Data 141

Use jumper wires to make the following connections:

Soil Moisture Sensor Pin Arduino Dock Pin

GND GND
VCC 5V
SIG A0

Depending on where you got your sensor, the labelling might be a little different, but they
should all follow the same sort of pattern as above.

Plug in the female ends of the jumper wires into the sensor:

142 Chapter 4. loT Projects

And then the male ends of the jumper wires into the appropriate Arduino Dock pins.

6. Sensor -> Plant

To be able to measure the moisture level of the plant’s soil, we’ll need to put the sensor into the pot!

4.0 Smart Plant - Measuring Plant Data 143
-
‘ by

/ B

.

Insert the sensor into the soil so that the metallic parts are completely covered by the soil.

The sensor isn’t super water-proof, so when watering your plant, avoid pouring water directly
on the sensor.

7. Download the Project Code

The code for the Smart Plant can be found in Onion’s smart-plant repo on Github. We’ll use git to
download the code to your Omega: navigate to the /root directory on the Omega, and clone the GitHub
repo:

cd /root
git clone https://github.com/OnionIoT/smart-plant.git

Now all of the code will be in the new /root/smart-plant/ directory on your Omega.

8. Run the Code

Let’s run the code!
python /root/smart-plant/smartPlant.py --oled

The program will run and collect a moisture level measurement through the Arduino Dock about once a
second. The measurement will be displayed on the command line as well as the OLED Expansion:

root@Omega-F11D:~# python /root/smart-plant/smartPlant.py --oled

https://github.com/OnionIoT/smart-plant
https://docs.onion.io/omega2-docs/installing-and-using-git.html
https://docs.onion.io/omega2-docs/installing-and-using-git.html

144

Chapter 4. loT Projects

> Latest measurement: 201

> Measurement List: 19%

>> Average Value: 19Y%

> Latest measurement: 200

> Measurement List: 19% 19%

>> Average Value: 19%

> Latest measurement: 201

> Measurement List: 19% 19% 19%
>> Average Value: 19

> Latest measurement: 202

> Measurement List: 19% 19% 19%
>> Average Value: 19%

19%

If you don’t have an OLED Expansion, leave out the ——oled part of the command.

The soil moisture sensor is an analog sensor, meaning that the signal it outputs to the Arduino
Dock is anywhere from 0V to 5V. The microcontroller sketch will read this as a value between
0 and 1023, where 0 represents 0V and 1023 represents 5V. This number isn’t particularly
meaningful to us, so on the Omega, we convert it to a percentage. If you take a look at the
above example, the first reading is 201, 201/1023*100% is 19%. And 19% is what we display

on the OLED.

Changing the Program Operation

This part is optional!

4.0 Smart Plant - Measuring Plant Data 145

To avoid fluctuations, the value from the moisture level sensor is averaged out from the previous 15
readings. This number can be changed with the command line arguments that are passed when the
program is run.

To have the value averaged out from the 3 latest readings, that is, to make it more reactive to changes,
run the following command:

python /root/smart-plant/smartPlant.py --oled --number=3

If you would like to make the readings less reactive to changes, we can also have the value averaged out
from the last 60 readings:

python /root/smart-plant/smartPlant.py --oled --number=60

Exiting the Program

Hit ‘ctrl4c’ to end the program. You’ll notice that the OLED will change so that you know your smart
plant is now just a regular plant:

9. Automate the Program to Run at Boot
To make sure your plant is always smart, we can configure the system so that the smart plant program
runs whenever the Omega boots up.

In the project directory, make the etc/init.d/smart-plant file executable, copy it into /etc/init.d,
then enable it by running the following commands:

146 Chapter 4. loT Projects

chmod +x etc/init.d/smart-plant
cp etc/init.d/smart-plant /etc/init.d/
/etc/init.d/smart-plant enable

The program will now run when the Omega is turned on. Try rebooting your Omega (enter reboot in
the command line), and you'll see that your program will start up again when the Omega boots up.

Code Highlight

In this project, the Omega communicates with the Arduino Dock over the serial port. This can be seen
in the measurementHelper.py module and the Arduino readAnalogValue sketch:

read analog value (0-1023) from the microcontroller

returns None if wvalue is not read successfully

def readMoistureLevel(serialPort):
need to write an 'r' character to trigger a measurement response
serialPort.write('r"')

read the response

try:
value = serialPort.readline()
if value == "":
print("Got blank value!")
value = None
else:
value = value.rstrip() #chomp the newline at the end of the response
except:

value = None

return value

// respond only if correct command ts recetved
if ((char)inByte == 'r') {
// respond with analog measurement
Serial.println(analogValue, DEC);
b

We are also able to easily check and parse command line arguments using Python’s getopt module in
smartPlant.py:

read the command line arguments
try:
opts, args = getopt.getopt(sys.argv[l:], "hvqgn:ol:p", ["help", "verbose", "quiet", "number=",
except getopt.GetoptError:
printUsage ()
sys.exit(2)
for opt, arg, in opts:
if opt in ("-h", "--help"):
printUsage()
sys.exit ()

4.0 Smart Plant - Visualizing Plant Data 147

elif opt in ("-v", "--verbose"):
VERBOSE = True

and so on

Going Further

Next we’ll make your plant a little smart by connecting it to a cloud data service so you can remotely
monitor it from anywhere in the world!

Smart Plant - Visualizing Plant Data

This is the second major part of the smart plant project! Last time, we setup an Omega to measure the
soil moisture level in one of your plants. This part involves sending that data to a cloud service so we can
visualize it and open the door to even more possibilities. The cloud service we will be using is the Losant
IoT Platform.

[X N J Losant x Lazar

&« C | & Secure https://app.losant.com/#/dashboards/58f449e3320a4d000100e0fa O Q 0O Y

LOSANT Dashboards ~ Applications ~ Organizations ~

2 DBOX | SMART PLANT

Visualizing the data from the smart plant!

Soil Moisture Level

Overview

Skill Level: Intermediate

Time Required: 1 hour

https://www.losant.com/
https://www.losant.com/

148 Chapter 4. loT Projects

We’re keeping the Arduino Dock and analog soil moisture sensor from the first part. Using a command
line argument, we will be activating a part of the Python program we didn’t use last time. This part of
the program will use the MQTT protocol to communicate with Losant.

Losant provides a Python library, losant-mqtt, to easily interface devices with their cloud platform.
Underneath, the popular paho-mgtt module is used to implement the MQTT communication. The same
thing can be achieved with just paho-mqtt since the Losant module is just a wrapper for paho-mqtt, but
the Losant module makes the implementation a little easier, so we’ll use it.

This project will provide a guide on setting up Losant for our purposes:

e Creating an application

e Creating a device on their platform

o Managing security with Access Keys

e Developing a basic workflow

e Setting up a Dashboard to visualize the smart plant data

It also shows how to setup an Omega to send data to Losant.

The complete project code can be found in Onion’s smart-plant repo on GitHub.

Ingredients

The same as the first part of the project:

e Onion Omega2 or Omega2+

e Onion Arduino Dock 2

o Omnion OLED Expansion (optional but recommended)
e Soil Moisture Sensor

e 3x Male-to-Female Jumper Wires

https://github.com/OnionIoT/smart-plant
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://www.amazon.com/gp/product/B00AFCNR3U/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00AFCNR3U&linkId=3bab7d579024c0b4b08adbf86379e3c3
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde

4.0 Smart Plant - Visualizing Plant Data 149

Step-by-Step

Follow these instructions to set this project up on your very own Omega)!

1. Prepare

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Complete Part 1 of the Project

This project builds on the first part of the Smart Plant project. If you haven’t already completed the first
part, go back and do it now!

https://docs.onion.io/omega2-docs/first-time-setup.html

150 Chapter 4. loT Projects

3. Register for Losant

Navigate to Losant.com and sign up for their free sandbox tier.

4. Create a Losant Application

You'll first need to create a Losant Application to be able to use their IoT Platform. For more details
see the Losant Application Documentation.

Click the Applications Menu, and then Create Application:

https://www.losant.com/
https://docs.losant.com/applications/overview/

4.0 Smart Plant - Visualizing Plant Data 151

® 90 piosam x Lazar

& C @& Secure https://app.losant.com/# tions w @ 4o

LOSANT Applications ~ Organizations ~ A lazr~

Weather Station

APPLICATIONS

View all Applications

Create Application 1item

Name Owner Devices Workflows

Weather Station n My Sandbox 1 1 i

Documentation 0 All Systems Operational
Forums
Store

Top 3 Connectivity Platforms For Your loT Devices

Introducing Losant Kiln - The Fastest way to Build AP1s for loT
Applications

Privacy Policy ' Terms of Service Built with © in Cincy

https://app.losant.com/#/applications/new

Give your Application a name, Smart Plant was our choice:

[X N J B Losam x Lazar
& C @& Secure https://app.losant.com tions/new w| @ a0

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar ~
NEW APPLICATION

f an applicatio

Smart Plant

Y My sandbox

B Create Application Cancel |

152 Chapter 4. loT Projects

00 Losant x

< C | & Secure https://app.losant.com/#/applications)ms . & -

LOSANT Dashboards ~ Applications ~

Smart Plant » Events Recipes Data Explorer Settings
1 MY SANDEOX / SMART PLANT Application ID: 58f43e8044:
DEVICES (View A oitems c | B2

USAGE (THIS PERIOD)

14 days remaining this per

Name
0

Payloads
<<>> tart connecting the Things in your worlc CREATE NEW DEVICE &

PAYLOAD USAGE DET!
No pa

WORKFLOWS (View A oitems ' c | [T

Name

https:/japp.losant.com/#/applications/58f43¢804033880001245253/devices/new

Ok, now your application is created

5. Create a Losant Device

Now that you have an Application, you’ll need to create a Device. A device on Losant can send data to
the cloud and receive commands from the cloud. For more details see the Losant Device Documentation.

Click the Devices menu, and then Create a Blank Device:

https://docs.losant.com/devices/overview/

4.0 Smart Plant - Visualizing Plant Data 153

® 00 piosam X Lazar

& C & Secure https://app.losant.com/#/ar tio - - evices/new w| @ a0

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar ~

1 MY SANDBOX / SMART PLANT / NEW DEVICE
CREATE FROM RECIPE CREATE FROM SCRATCH

Create Blank Device

Manage My Device Recipes »

Platform Q All Systems Operational

Technology
Pricing
Use Cases

hitps:/japp.losant.com/#/applications/5814 30804d33880001245353/davices/new/custom Top 3 Connectivity Platforms For Your IoT Devices

Give your device a name, we found it easiest to use the name of the Omega we’re using to measure the
soil moisture levels. Make sure the Device Type is set to Standalone:

® 0@ ' uiosam x Lazar

<« C | & Secure https://app.losant.com/#/applications . - evice t % a9 0

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar~

Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer
Y MY SANDBOX / SMART PLANT / NEW DEVICE
DEVICE OVERVIEW

omega-f11d

DEVICE TYPE

© Standalone

one devices connect and report their state directly 1o Losant. This is the most common type of

Gateway
Gateway d

connect directly to Losant and can report

Peripheral. A ¢

nmon example is a gateway device that reg

Cancel |

Scroll down and add a Number attribute named moisture to the device. This attribute will hold the soil

154 Chapter 4. loT Projects

moisture level data coming from your Omega:

[X N J Losant x Lazar

& C | & Secure https://app.losant.com/#/applications s m m &% =@ devices/new/custom | @9 0Y

DEVICE ATTRIBUTES

Attributes define the fields and data types of the device's state. These are used to properly visualize
and validate the various sensor or other data this device reports, For example a device with a
temperature sensor might have an attribute with the data type "Number” and the name "temperature”,

Data Type Name

—g Number % | moisture

ata Type Name

@ Number :

DEVICE TAGS

Device tags provide a way to organize your devices, Tags are defined as keys and values. In other parts
of the platform, like visualizations, you can query devices by their tags.

Keys may only contain uppercase letters, lowercase letters, numbers, underscores (_) or hyphens (-).

Koy Value

4

Hit Create Device and your device will be ready to go. Note the Device ID on the upper right hand
side:

® 00 pmiosam x \U Lazar

& C | @ Secure https://app.losant.com/#/applicationsjmess wm e e e e e #/properties | A0 Y

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar -~

SmartPlant» Devices + Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / OMEGA-FIID (Device ID: iyiom § v iw & W wa Ocopy
DEVICE OVERVIEW
PROPERTIES
DEBUG omega-f11d
DATA
A t first connection ¢
to Losant ...

DEVICE TYPE (0

© Standalone
Standalone devices connect and report their state directly to Losant. This is the most common type of
device,

Gateway
Gateway devices connect directly to Losant and can report state for themselves or devices of type
Perioheral. A common examole is a eatewav device that reoorts state for one or more bluetooth sensors.

Cancel ‘ + Create Recipe Delete Device

4.0 Smart Plant - Visualizing Plant Data 155

6. Create a Losant Access Key

To actually get your Omega to communicate with Losant, it will need to authenticate. To carry out that
authentication, we’ll use an Access Key. For more details see the Losant Access Key Documentation.

Click the Security Menu and then the Add Access Key button:

® 00 pmiosam x Lazar
it & SCUrtVIace ¥ @ QO

& C & Secure https://app.losant.com/#/ar
Organizations ~ § lazar ~

LOSANT Dashboards ~ Applications ~

1 MY SANDBOX / SMART PLANT / SECURITY s a

0 items

ACCESS KEYS
Access Key Restrictions Created At J

ATION AP|
No Items Found

Documentation 0 All Systems Operational

Forums
Store
Top 3 Connectivity Platforms For Your loT Devices
Introducing Losant Kiln - The Fastest way to Build APts for loT
Applications

Privacy Policy ' Terms of Service Built with © in Cincy

https://app.losant.com/#/applications/58f43¢804d33880001a45a53/security/access-keys/now

Give the key a description:

https://docs.losant.com/applications/access-keys/

156 Chapter 4. loT Projects

® 90 ' iosam x | [Device Overview | Losant Do X Lazar

& C | & Secure https://app.losant.com/#/applications/me m &% w=.m [security/access-keys/new X @O0 Y

LOSANT Dashboards ~ [EENRIEHEIERS

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / SECURITY

ACCESS KEVS Access Keys | New Access Key

APPLICATION API Description
TOKENS
. Allow Omega-F11D to connect to the Smart Plant Application

The following values cannot be changed after key creation. If you need to make edits, you
will have to create a new access key.

DEFINE ACCESS RESTRICTIONS

You can choose to either make this access key valid for use by any device in this application, or restrict
it work for only a subset of devices. A restricted key will only be usable for authentication by the
devices you define, and any device authenticated using a restricted key will only be able to see other
devices that are in that same restricted scope. Restrictions can be specified as a selection of devices,
device tags, or both.

We're setting the Key to authenticate all of our devices on Losant. This is slightly risky, if you like, you
can change it so that the access key is restricted to just a single device.

In either case, hit the Create Access Key button:

&« C | & Secure https://app.losant.com/#/applications/ s #« & . = #. W= B Isecurity/access-keys/new | QaAQO0Y
ACCESS Rey TOr Smart Pant

The following values cannot be changed after key creation. If you need to make edits, you
will have to create a new access key.

DEFINE ACCESS RESTRICTIONS

You can choose to either make this access key valid for use by any device in this application, or restrict
it work for only a subset of devices. A restricted key will only be usable for authentication by the
devices you define, and any device authenticated using a restricted key will only be able to see other
devices that are in that same restricted scope. Restrictions can be specified as a selection of devices,
device tags, or both,

Faster —Jp @ All Devices

Safer —Jp) Restricted To Specific Devices

4.0 Smart Plant - Visualizing Plant Data 157

The access key and secret have now been generated! Make sure to note them both down because
this will be the only time you will get to see the Secret! We recommend downloading to a

file.

eoe@ -Lmam <\ Lazar
& C | @ Secure https://app.losant.com/#/applications/mes ms “gli &8 =g /security/access-keys/new A 9aAQ0Y

New Access Key

Losant does not store your access secret and cannot recover it for you. If
you lose your access secret after closing this window, you will have to generate a new
access key / secret pair.

Access Key:

AL 1 e=T a1 T Ticopy

Access Secret:

(=)
|- SR W] By I L P TR (‘:Eow)

I have copied my access key and secret to a safe place.

Alright! Your Access Key is ready to go!

158 Chapter 4. loT Projects

® 09 puiosam X Lazar

& C & Secure https://app.losant.com/#/ar tio - - ecurity/ace w| @ a0

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar ~

Security Experience Webhooks Recipe data Explorer

EY MY SANDBOX / SMART PLANT / SECURITY pAad Acoess Kay

1item

ACCESS KEYS
Access Key Restrictions Created At J

. IR L. No Restrictions April 17, 2017 12:18 AM v

& All Systems Operational

Top 3 Connectivity Platforms For Your loT Devices

Introducing Losant Kiln - The Fastest way to Build APts for loT
Applications

access-key-dd1cOe3e-...txt ~ 3 showAl X

7. Create a Losant Workflow

Now we need to make a Losant Workflow so our device can interact with the rest of Losant. For now,
our workflow will be a simple tool for debugging. These workflows are easy to use and very powerful,
definitely check out Losant’s workflow documentation to learn more.

Click on the Workflows menu and then Create Workflow. Give your workflow a name and a description:

https://docs.losant.com/workflows/overview/
https://docs.losant.com/workflows/overview/

4.0 Smart Plant - Visualizing Plant Data 159

LA A Losant X Lazar

&« C & Secure https://app.losant.com/#/appl

LOSANT Dashboards ~ Applications ~ Organizations ~ A8 lazar ~

SmartPlant» Devices mns Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / NEW WORKFLOW

CREATE WORKFLOW

Workflows are your method of interacting with your Internet-connected devices. Depending on device
states or other external events, you can trigger notifications or processes in the physical world

Smart Plant Measurement

Retrieve soil moisture reading from the smart plant

Type device into the search bar, then click and drag the Device block onto the area in the middle:

® 00 pmiosam x
w| @ ao

& C & Secure https://app.losant.com/#/ap

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar -~

Smart Plant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

FY MY SANDBOX / SMART PLANT / SMART PLANT MEASUREMENT * * Deploy Workflow
« | device e
A Workflow
N PORT
Export your workflow to a file.
%) Experience PN
Please save and deploy your workflow to enable exporting.
<> Logic A
IMPORT
O Data ~ Import a previously exported workflow into the current
workflow.
Get Device
© Outputs A . =
Device Command
CLONE

Device State
Duplicate this workflow and make edits. By default, the

cloned workflow is disabled until you enable it.

B Properties © Debug Globals & Storage

Click on the new Device block and scroll down in the right-side toolbar to select which of your devices
will be associated with this Device block. You’ll want to select the device you just created:

160 Chapter 4. loT Projects

[N N J Losant x Lazar

& C | & Secure https://app.losant.com/#/applications s & - g

ws/58f43f324d33880001a45a

w| @ ao0

OSANT Dashboards ~ Applications ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT MEASUREMENT * * Deploy Workflow
“ device »
¥ Triggers A _ © Device

“deviceld

//» & Device triggerId": “device_id_that_reported"
Device o'

%) Experience A “Example ce Name"
: “58f431324433880001045256"
“Smart Plant Measurement™
<> Logic /s
O Data N DEVICES
Select the device(s) and/or tag(s) to trigger on below
Get Device
© Outputs A * @ omega-fd x v
Device Command
sk -
B Properties © Debug Globals @ Storage

Now, let’s add a Debug box so we can view the data coming from our device. Type debug into the search
box:

o0oe0 Losant x Lazar

(= C | & Secure https://app.losant.com/#/app

w @ ao
LOSANT Dashboards ~ Applications ~ Organizations ~ A8 lazar -~

Smart Plant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT MEASUREMENT * 2 Deploy Workflow

4« | debug - »
¥ Triggers A (G ® Device

“device_id_that_reported"

@ Experience ~ * : “deviceld'
<> Logic A “Example Device Name"
31324433880001045356"

f Smart Plant Measurement”
© Data ~
© Outputs A DEVICES

Select the device(s) and/or tag(s) to trigger on below
Debug

* @ omega-fd x -

B Properties © Debug Globals & Storage

Drag the Debug block into the area in the middle:

4.0 Smart Plant - Visualizing Plant Data 161

[N N J Losant x Lazar

58f43f324d33880001a45a56 % @ 4ao0

& C | & Secure https://app.losant.com/#/applications ' - &% = m ‘workflow

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT MEASUREMENT * * Deploy Workflow
4« debug "
¥ Triggers ~ & Debug

@ Device
@) Experience ~ °
<> Logic ~

OUTPUT
© Data ~
To only display a single property from the payload, add a
- payload path below. Leave the field blank to display the

© Outputs A L entire payload. If the property is not set on the payload,

—’"_’”_‘_’» T the debug output will print undefined .

Debug

<@

B Properties © Debug Globals @ Storage

We now need to connect the two blocks. Click on the diamond at the bottom of the Device block and
drag it down to the square at the top of the Debug block, and then hit the Deploy Workflow button:

(X N} Losant x Lazar
001345256 " QaAQOY

& C | & Secure https://app.losant.com/#/applications s ' - &% = m ‘workflows/58f43f324d3:

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar -~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

F1 MY SANDBOX / SMART PLANT / SMART PLANT MEASUREMENT * Deploy when done * Deploy Workflow

- debug »
¥ Triggers A @ Connector

@ Experience A WDelete Connector

<> Logic ~
© Data A

© Outputs A~

Debug
= B Properties © Debug Globals & Storage

Your workflow is now saved and deployed, meaning that it’s running at this very moment on the cloud:

162 Chapter 4. loT Projects

LA A Losant X Lazar

&« C & Secure https://app.losant.com/#/applications, s . - &% w=.m workflows/58f43f324d33880001a45a56 Qa0 Y

LOSANT Dashboards ~ Applications ~ Organizations ~ A8 lazar ~

SmartPlant» Devices » Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / SMART PLANT MEASUREMENT

4 @ Connector
Device

On Connect
On Disconnect
Endpoint
Event

MQrT

Timer

Virtual Button

Webhook

%) Experience ~
B Properties © Debug Globals @ Storage

8. How does my Omega talk to Losant?

Glad you asked! There’s some additional software and configuration we need to do on the Omega to get
it to report the soil moisture level to Losant on a regular basis. Behind the scenes, the Python script will
be using MQTT to communicate with Losant.

If you haven’t completed the first part of the Smart Plant project, you need to go back and do it now
before proceeding. The remainder of the steps assume that the smart-plant code can be found at
/root/smart-plant on your Omega.

9. Install Required Software on the Omega

To install additional Python packages, we’ll need to install the Python package manager, PIP. Connect
to the Omega’s Command line and run the following command:

opkg update
opkg install python-pip
Now that PIP is installed, we’ll first fix an issue with the setuptools module, and then install two

modules.

pip install --upgrade setuptools
pip install paho-mqtt
pip install losant-mqtt

The paho-mgtt module provides MQTT functionality, and losant-mqtt provides an easy to use interface
for connecting to Losant.

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh

4.0 Smart Plant - Visualizing Plant Data 163

10. Setup Losant Credentials on Omega

In order to connect and authenticate with Losant, the Smart Plant program will need to know the Device
ID of your Losant Device, as well as your Access Key and Secret.

Look at your device on Losant to get the Device ID:

® 00 /miosam X Lazar

& C | & Secure https://app.losant.com/#/apy tions, - . S——— - § g %l a9 0

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar ~

1 MY SANDBOX / SMART PLANT / OMEGA-FIID (Device 10: sl j v i Wy nu]

DEVICE OVERVIEW

PROPERTIES

DEBUG omega-f11d

first connection ¢
to Losant

DEVICE TYPE

© Standalone
Standalone devices connect and report their state directly to Losant This is the most common type of
device.

Gateway
Gate

vices connect directly to Losant and can report state for themselves or device:
A common examole is a atewav device that reoorts state for one or more blu:

e Cancel + Create Recipe

The Access Key and Secret you should have noted down somewhere when you created the Access Key. If
you don’t have the Access secret noted down somewhere, you’ll have to create a new Access Key!

Now on your Omega, in the /root/smart-plant directory, there is a configuration file template called
losant. json. Open it for editing and enter your deviceld, key, and secret to complete the setup.

11. Stop the Existing Program

In the first part of the project, we added a script to /etc/init.d to automatically run the smart plant
program on boot. We’ll now need to stop the program before running it again manually.

Run the following command:

/etc/init.d/smart-plant stop

12. Report the Smart Plant Data to Losant

Let’s try running the Smart Plant program with reporting to Losant enabled. We’re also providing the
path to the Losant configuration file:

python /root/smart-plant/smartPlant.py --oled --quiet --losant /root/smart-plant/losant.json

164 Chapter 4. loT Projects

Assuming your Losant credentials are valid, you should see your device come online on Losant:

® 90O puiosam x Lazar

IS C | & Secure https://app.losant.com/# t - evice w 4990

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazr~

Devices

EX MY SANDBOX / SMART PLANT / DEVICES * Bport ..

1item

Name D Attributes Tags

omega-f11d -y -- - aw - 1 0 »

Documentation & All Systems Operational
Forums
Store

Top 3 Connectivity Platforms For Your loT Devices

Introducing Losant Kiln - The Fastest way to Build APis for loT
Applications

Privacy Policy ' Terms of Service Built with © in Cincy
https://app.losant.com/#

Going to the workflow, we can take a look at the Debug block’s Debug output to see the data coming
from the Omega:

® 0@ 'y uiosam X Lazar

& C @& Secure https://app.losant.com t id ‘workflow 1431324 g 45356 oo o0

LOSANT Applications ~ Organizations ~ A lazar -~

Workflows » Events Security xperience Webhook Recipe Jata Explorer

PLANT / SMART PLANT MEASUREMENT

»

¥ Triggers A & Debug
Device
Debug Node Output A
On Connect

On Disconnect

Debug data ———p» L2 2EN
Endpoint ©

Event

MQTT

imer

Virtual Button

Webhook
! B Properties © Debug Globals # Storage
https:/fapp.losant.com/#

4.0 Smart Plant - Visualizing Plant Data 165

If you look at the Python code, you’ll see that what we send from the Omega is showing up in the debug
window on Losant:

{
"data" {
"moisture": "<MOISTURE LEVEL READING>"
}

Hit ctrl+c to stop the program.

13. Update Program Run at Boot
Since we now need to run the Smart Plant program with additional arguments to talk to Losant, we’ll
need to update the /etc/init.d/smart-plant file.

Open the /etc/init.d/smart-plant file using the Vi editor: vi /etc/init.d/smart-plant. Hit i and
use the arrow keys to navigate to the line that says BIN="usr/. ... After the -—quiet text, insert a space
and type the following:

--losant /root/smart-plant/losant.json
and insert a space between the json and the > character.
Your smart-plant file should now look like this:

#!/bin/sh /etc/rc.common
Copyright (C) 2016 Onion Corporation
START=99

USE_PROCD=1
BIN="/usr/bin/python /root/smart-plant/smartPlant.py --oled --quiet --losant /root/smart-plant/lo

start_service() {
procd_open_instance
procd_set_param command $BIN
procd_set_param respawn
procd_close_instance

Hit esc and type :wq to save and close the file.
Then re-enable the program:
/etc/init.d/smart-plant restart

Try rebooting your Omega (enter reboot in the command line), and you’ll see that your program will
start up again when the Omega boots up.

14. Create a Losant Dashboard
Now that we’ve successfully sent data to Losant, let’s create a Dashboard so we can easily check in on
our plant and see how much moisture there is in the soil.

Click the Dashboards menu and then Create Dashboard, give your dashboard a name and description.
Hit Create Dashboard:

166 Chapter 4. loT Projects

o000 Losant x Lazar
&« C & Secure https://app.losant.com/#/da QOO0 Y :
LOSANT Dashboards ~ Applications ~ Organizations ~ A8 lazar -~

NEW DASHBOARD

CREATE DASHBOARD

Dashboards allow you to view stats, graphs, events and devices across multiple applications. Name

your d ot started.

Smart Plant

Visualizing the data from the smart plant!

Y My Sandbox

Cancel

Let’s add a Time Series Graph to the dashboard:

o0e Losant x Lazar
&« C @& Secure https://app.losant.com/#/dashboards, -

w @ ao

LOSANT Dashboards ~ Applications ~

Organizations ~

Y MY SANDBOX / SMART PLANT / ADD BLOCK

Select Block to Add
This one ——» TIME SERIES GRAPH 6PS HEATMAP 6PS HISTORY
- BOAL 51 Ee
L :

Y

"
¥ SrT (ﬁ./ \¢ ~—

Graphs one or more devices and their Heatmap of the GPS positions of one or

Displays the GPS history of one or more
attributes over a custom time range.

devices over a time period.

Customize Customize

more devices at any point in time.

2 B P - —

¢ per kWh

https:/japp.losant.com/#/dashboards/58f4490332024d000100e0fa/add - block/graph

Give the block a Name and set the time range to 60 minutes and one point every 10 seconds:

4.0 Smart Plant - Visualizing Plant Data 167

o000 Losant x tazar

€ C & Secure https://app.losant.com/#/dashboards,

LOS ANT [EOECILEEIGERGE Applications ~

1 MY SANDBOX / SMART PLANT / ADD BLOCK / NEW TIME SERIES GRAPH BLOCK

BLOCK OVERVIEW

The time series graph allows you to display historical data across one or more devices. (View Documentation) Sl -Nodaturs: Lovel

—> Soil Moisture Level

SELECT APPLICATION

Select the application that owns the devices you'd like to view. Time series graphs allow you to graph multiple attributes

across multiple devices from a single application

Smart Plant -

DURATION

Select how far into the past you'd like to view and what resolution to group your data by. The available resolutions will
change depending on how far into the past you go. How the data is grouped depends on the selected aggregation.

——P» 60 minutes $ 10 seconds :

=

Scroll down to select your device from the Device IDs dropdown. Then select moisture from the Attribute
dropdown:

o000 Losant x tazas
& C & Secure https://app.losant.com/#/da ard - - edit-block/HySQ9!
BLOCK DATA

Select the devices and attributes to graph. Devices can be specified as a selection of devices, device tags, o both. When Soil Moisturs Level
multiple devices are specified, the v

are aggregated together.

Series 1 + ¢ a

* @ omega-fi1d X v moisture

Apr 18 2077, 10:17:50 pm

Series1:3

Series 1 B=0 MEAN 8

2 B o M - Cumulative

= = 1 Clone Block Delete Block

Awesome! Your dashboard is now displaying the soil moisture data being collected by your Omega:

168

Chapter 4. loT Projects

15. Playing with the Dashboard

Try watering your plant a little while after you’ve setup the dashboard:

® 90 miosam x

& C | & Secure https://app.losant.com/#/dashboards/58f449e332

LOSANT Dashboards ~ Applications ~

& MY SANDBOX | SMART PLANT

Visualizing the data from the smart plant!

Soil Moisture Level

® 00 ' iosam x

= C @& Secure https://app.losant.com/#/d

LOSANT Dashboards ~ Applications ~

& MY SANDEOX | SMART PLANT

Visualizing the data from the smart plant!

Soil Moisture Level

Lazar

Organizations ~ A lazar ~

L~ 2

Lazar

Organizations ~ § lazar ~

4.0 Smart Plant - Visualizing Plant Data 169

What a jump!

Adjusting the Y-Axis

You might have noticed that the Y-axis adjusted automatically to fit the data. Since we know our
measured value is limited in the 0 to 100 range, we can adjust the graph.

Hover over the graph and click on the Gear icon. Scroll down and adjust the Y Axis Minimum to 0 and
the Maximum to 100:

[N N J Losant X Lazar

<« C | & Secure https://app.losant.com/#/dash

CNANEE UEPENUINg O TOW Tar 1IN0 UTE Past you gU. HOW UTE Uat

ck/HySQ96ZAe w a9 o0

PREVIEW

60 minutes s 10 seconds s Soil Moisture Level

BLOCK DATA

Select the devices and attributes to graph. Devices can be specified as a selection of devices, device tags, or both. When
multiple devices are specified, the values are aggregated together.

Series 1 “
* @ omega-fiid X v moisture % v
Series 1 B MEAN
2 $ 2 | M - Cumulative
..... M

0 100

Hit Save Block and check out the chart now:

170

Chapter 4. loT Projects

0o Losant X

&« C | & Secure https://app.losant.com/#/dashboards/58f449e3320a4d

LOSANT Dashboards ~ Applications ~

Visualizing the data from the smart plant!

Soil Moisture Level

Changing the Time Range

Lazar

Organizations ~ § lazar ~

Seeing just the last hour of our plant’s moisture level isn’t too helpful, so let’s change it to something

more useful!

Hover over the chart and click the Gear icon. Adjust the Graph’s Time Range to 24 hours or more.

4.0 Smart Plant - Visualizing Plant Data

171

® 90 piosam X

& C | & Secure https://app.losant.com/#/dashboards/58f449e3320a4d

LOSANT Dashboards ~ Applications ~

Lazar

1 MY SANDBOX / SMART PLANT / EDIT BLOCK

BLOCK OVERVIEW

The time series graph allows you to display historical data across one or more devices. (View Documentation)

Soil Moisture Level

SELECT APPLICATION

ke to view. Time series graphs allow you to graph multiple attributes

Smart Plant

tions will

24 hours C 5 minutes :

Cancel ‘ © Clone Block

Soil Moisture Lavel

Hit Save Block and check out your extended chart. In this case, there was only data for the previous 18
hours, so everything before then is blank. If you have more data, a time range of many days might be

more suitable:

0@ Losant x

< C | & Secure https://app.losant.com/#/dashboards/58f449e3320a4d0001

LOSANT Dashboards ~ Applications ~

Visualizing the data from the smart plant!

Soil Moisture Level

Lazar

Organizations ~ § lazar ~

o~

If you do want to display more data, it would be useful to have a larger chart! Hover over the chart and

172

Chapter 4. loT Projects

click and drag the icon to change the size:

o0 Losant x

< C | & Secure https://app.losant.com/#/dashboards/58f449e3320a4d000100e0fa

LOSANT Dashboards ~ Applications ~

a2 DBOX ' SMART PLANT

Visualizing the data from the smart plant!

Soil Moisture Level

Going Further

Lazar

Organizations ~ § lazar ~

[~ 3

Next we’ll give our plant a voice of its own by connecting it to Twitter and having it broadcast to the

world!

Smart Plant - Twitter Alerts

Give your plant a voice of its own with Twitter! In part three, we’ll build on what we’ve created in part
one and two to get our plant to Tweet at us based on the moisture data collected.

u What’s happening?

B mmmw 128
@ Hey! It's your plant! Water me please!
My soil moisture level is 100%!

©

4.0 Smart Plant - Twitter Alerts 173

Overview

Skill Level: Intermediate
Time Required: 25 minutes

To accomplish this, we’ll create a Losant workflow to read and check the moisture data from the Omega,
then send a Tweet using Losant’s Twitter integration. To get there, we’ll create an App on Twitter to
allow Losant to send Tweets.

Ingredients

The same as the first part of the project:

e Onion Omega2 or Omega2+

e Onion Arduino Dock 2

e Onion OLED Expansion (optional but recommended)
e Soil Moisture Sensor

e 3x Male-to-Female Jumper Wires

MAC 40A368COF10 SR

Step-by-Step

Follow these instructions to set this project up on your very own Omegal

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://www.amazon.com/gp/product/B00AFCNR3U/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00AFCNR3U&linkId=3bab7d579024c0b4b08adbf86379e3c3
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde

174 Chapter 4. loT Projects

1. Prepare

You’ll have to have an Omega?2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Complete the Previous Parts of the Project

This project builds on the first and second parts of the Smart Plant project. If you haven’t already
completed the first part and second parts, go back and do them now!

3. Login to Losant

Head over to Losant.com and log in.

4. Losant Workflow: First Things

WEe’ll need to create a new workflow to let our plant Tweet at us.

Click on the Workflows menu and then Create Workflow. Give your workflow a name and a description:

https://docs.onion.io/omega2-docs/first-time-setup.html
https://www.losant.com/

4.0 Smart Plant - Twitter Alerts 175

[N N] Losant x Lazar
sinew % a9 0

& C & Secure https://app.losant.com/#/app

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / NEW WORKFLOW

CREATE WORKFLOW

Workflows are your method of interacting with your Internet-connected devices. Depending on device
states or other external events, you can trigger notifications or processes in the physical world.

o

> Smart Plant Notifications
riptior

_.> Notify me when my plant needs water{

8 Create Workflow

Add a Device block just like before:

[X N } Losant x Lazar
& C @& Secure https://app.losant.com/#/app! T 990
LOSANT Dashboards Organizations Lazar
SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
- te »
A Workflow
M EXPORT
Device
Export your workflow to a file.
On Connect Please save and deploy your workflow to enable exporting,
On Disconnect IMPORT
Endpoint Import a previously exported workflow into the current
workflow.
Event +
Timer
CLONE
Virtual Button ' Duplicate this workflow and make edits. By default, the
cloned workflow is disabled until you enable it.
Webhook ~

B Properties © Debug Globals & Storage

Make sure the device is pointing to the Omega connected to our plant.

176

Chapter 4. loT Projects

[N N] B Losant x Lazar

&« C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/wor

LOSANT Dashboards ~ Applications ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

¥ Triggers A / & Device
&,

Device

»

© Device

Smare ruant

: “device_id_that_reported"
1 “deviceld

"Example Device Name"
581a995dbea78200
: "Smart Plant Notifications®

On Connect

dc29:

: DEVICES
Endpoint
Select the device(s) and/or tag(s) to trigger on below

®
o
53 On Disconnect
a
A

Event

Lo maQrT * @ omega-fmd x
G Timer
(OB virtual Button + ¥ Delete Node
@ Webhook oy ~
B Properties © Debug Globals & Storage

5. Losant Workflow: Debugging Node

Let’s drop in a Debug block to check our moisture data is being properly received:

[X N} Losant x Lazar
& C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa895dbea782000 * AV 0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ Lazar ~
Smart Plant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
FY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
4« | debug i
¥ Triggers A © Device @
Seare riant
. levice_id_that_reported™
@ Experience A “deviceld
<> Logic ~ : "Example Device Nanme"
5812995dbea7820001dc2961"
° Data A f Smart Plant Notifications®™

DEVICES

Select the device(s) and/or tag(s) to trigger on below.

Deb

Outputs info

* @ omega-fnd x v

B Properties © Debug Globals & Storage

4.0 Smart Plant - Twitter Alerts 177

We'll add in a message to print out the moisture level:

o0 Losant X Lazar
< C | @ Secure https://app.losant.com/#/applications/5843e80 380001a45a53/workflow 5dbea7820! | GO O0Y
OSANT Dashboards ~ Applications ~ Organizations ~ Lazar ~
Smart Plant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
1 MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
+« debug "
¥ Triggers ~ & Device & Debug C
. The Dedbug Node outputs the value of the payload at this
@ Experience A ig Node otput % pay K UNS

point in the workflow. The payload can be viewed in the
*Debug" tab below.

<> Logic ~ I
© Data A vebug - Debug
© Outputs ~ Add Description
INPUT
Debug

Optional message for the debug node to include. The
field is templatable.

—] | Device State: {{data.moisture}}

OUTPUT
B Properties © Debug Globals & Storage
T —————
And make the connection:
[X N} Losant x Lazar
€ C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/ 5dbea7820001dc29e1 T @O O0Y

LOSANT Dashboards ~ Applications ~

Organizations ~ Lazar ~

SmartPlant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
« | debug =
¥ Triggers o @ Connector ©)

@) Experience N WDelete Connector
<> Logic PN
© Data A
© Outputs ~

Debug

B Properties © Debug Globals # Storage

178 Chapter 4. loT Projects

6. Losant Workflow: Time Window

It would defeat the purpose and be be pretty annoying if our plant sent us a notification asking to be
watered in the middle of the night. We’ll use the Time Range node to make sure our notifications go out
only during the day. Check out Losant’s Time Range node documentation for more info.

Pull out a Time Range node from the sidebar to get started:

[X N} Losant x Lazar
& C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53 /workflows/58fa895dbea7820001dc29e1 T OO 0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar -~
Smart Plant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
<« Filter Node Palette »
Workflow
Math A
Mutate
Smart Plant Notifications
On Change

Descript

Random Number Notify me when my plant needs water!

Switch

WORKFLOW STATUS

Enable or disable the running of this workflow.
Time Range
@ Enabled

EXPORT

Export your workflow to a file.

AWS Lambda
B Properties ° Debug. Globals & Storage

As always, the options provided by the node can be found in the right panel. We’ve set the node to allow
the flow to continue if the time is between 9:00 to 21:00 (9am and 9pm) every day, feel free to decide
what times work for your plant. Don’t forget to set your Time Zone!

https://docs.losant.com/workflows/logic/time-range/

4.0 Smart Plant - Twitter Alerts 179

LA A Losant x Lazar
& C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29%e1 T A9 0Y
LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

“ Filter Node Palette
Time Range @
Math 2 - :

Mutate TIME RANGE

Specify the time window to check against. Times are
defined in HH:MM format (24 hour time), and support

On Change

nge templating, so you can use values from the current
Random Number payload to build the time range.
Switch
America/Toronto ;
Throttle
Start Time End Time
TingRangey w— | 09:00 21:00}
Validate Payload Weelkdays
Q a /]
© Data ~ S M T W T F S
AWS Lambda =

B Properties o Dehug. Globals & Storage

7. Losant Workflow: Check Moisture

Once we have our time window set up, we’ll have to check for moisture!

The Latch node is used to perform a task a single time when a condition has been fulfilled. The node
will not perform the task again until another condition has been achieved, kind of like a reset switch. It
can be used for things such as one-time notifications. Check out Losant’s Latch node documentation for
more details.

https://docs.losant.com/workflows/logic/latch/

180 Chapter 4. loT Projects

[N N] Losant x Lazar
& C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 T A9 0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ A8 lazar ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

“ Fiiter Node Palette

HTML/XML Parser @ Connector @

Json Decode

@ Time Range
& O

Mutate

On Change
Random Number
Switch

Throttle
B Properties © Debug® = Globals @ Storage

For example, you can use it to send a single alert when a moisture sensor has dropped below 20%, and
not send any more alerts until the level has risen back above 40%.

Each Latch node has two required conditions:

e The ‘Latched’ condition - when evaluates to true, triggers a following node once and only once
until it has been reset.

e The ‘Reset’ condition - when evaluates to true, resets the ‘Latched’ condition so that it may trigger
a node again.

4.0 Smart Plant - Twitter Alerts 181

© 00 /g iosan x 4 Omega SmartPlant | Twitter - % | ekt
& C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29%e1 T A9 0Y
LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~

SmartPlant» Devices » Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
« Filter Node Palette =
¥ Triggers A X Latch ()
pevi LATCH CONDITIONAL
iy Specify the latch expression to evaluate. When it
On Connect M evaluates to false, the node will always take the false

path. When it evaluates to true, it will only take the
true if the node is not in a latched state (and in that

On Disconnect case will also 'latch' the node).

Latch Expression

Endpoint
[-g. ([data.moisture }J} < 300 (1)
Event
RESET CONDITIONAL

marT

Specify the reset expression to evaluate. When it
Timer evaluates to true, the latch state of the node will be

reset.
Virtual Button \ Reset Expression

[e.g. {{ data.moisture }} > 500 I
Webhook oy = ¢ {lda ~ -

B Properties © Debug * Globals & Storage

Let’s create some global variables to dictate the moisture levels we’ll use to trigger the latch and to reset
it. By using global variables, it’s easy for us to later experiment with different moisture levels and then
ensure that the values get updated throughout the entire workflow. Create a LOW_MOISTURE variable to
trigger the latch and a 0K_MOISTURE variable to reset the latch:

©0 0 o x | 4 Omega Smart Plant | Twitter © X et
<« C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 | @O0 Y
LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar~

SmartPlant» Devices + Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
“ Filter Node Palette e
¥ Triggers - i= Workflow Globals (O]
Device You can define values here that will be placed on the payload
- under globals atthe start of each workflow run.
On Conniect Key value Data Type
— LOW_MOISTL 35 Number 5=
Time Ra =
On Disconnect e o
& & Key Value Data Type
Endpoint - OK_MOISTUF 50 Number & —
Event Key Value Data Type
String $
MQrT
Timer

Virtual Button

Webhook ~

B Properties © Debug Storage

Globals

| https:/japp.losant.com/#

182 Chapter 4. loT Projects

Once the global variables are setup, they can be used in the Latch node:

©00 /g iosm x 4 Omega Smart Plant | Twitter © X S
& C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa895dbea7820001dc29e1 T A9 O0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar ~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workfiow

-« Filter Node Palette
X Latch (O]
LATOH CONDITIONAL

¥ Triggers -~

Device Specify the latch expression to evaluate. When it

evaluates to false, the node will always take the false
path. When it evaluates to true, it will only take the
true if the node is not in a latched state (and in that
case will also latch’ the node).

On Connect

@ Time Range
& 9,

On Disconnect

Latch Expressior

Endpoint
ndpoin - ((data.moisture}} < {{globals.LOW_MOISTURE}}

Event
RESET CONDITIONAL

maQrT
Specify the reset expression to evaluate. When it
evaluates to true, the latch state of the node will be
Timer reset.

Reset Ex

Virtual Button

R {{data.moisture}} >= {{globals.OK_MOISTURE}}
Webhook

B Properties © Debug * Globals @ Storage

Now that it’s set up, we’ll connect the Latch to the Time Range node. Make sure to connect to the Time
Range node’s true path. This is the path that will be active if the current time is within our previously
defined time range:

4.0 Smart Plant - Twitter Alerts 183

® 00 miosam x Lazar
C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa395dbea7820001dc29e1 | @O0 Y
LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

4« Filter Node Palette ”

@ Connector @

HTML/XML Parser

Json Decode

Json Encode (5]

@ Time Range

Latch

Math

Mutate

On Change
Random Number
Switch

Throttle
B Properties o Dehug. = Globals & Storage

7. Losant Workflow: Twitter Event

The goal of this project is to get our plant to Tweet us. So when the Latch triggers, we definitely want
it to send off a Twitter event.

Luckily for us, Losant provides a Tweet node! Check out Losant’s Tweet node documentation for more
info.

https://docs.losant.com/workflows/outputs/tweet/

184 Chapter 4. loT Projects

© 00 /piosam x 4 Omega Smart Plant | Twitter © X Lazar
C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa395dbea7820001dc29e1 | @O O0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~

SmartPlant» Devices » Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

-« Filter Node Palette

@ Connector ®

Modify Event
mQrT
SendGrid
Slack

Email

SMS

Tweet

Twilio

Webhook Reply

Workflow B Properties © Debug = Globals @ Storage

Taking a look at the properties, it looks like we’ll need to register an App with Twitter so we can obtain
an API key and User Access Token to send Tweets:

® 00 pmiosam x | 7 Omega SmartPlant | Twitter + X Lazar
L= C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa995dbea7820001dc29e1 * @0 0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar -~

SmartPlant» Devices + Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

FY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
4« Filter Node Palette P
. W Tweet (O]
Modify Event Access Token Secret for the Twitter account to tweet
under.
marr ~
Application Consumer Key
SendGrid [° l
@ Time Range
Slack % Agplication Consumer Secret
l J
Email
User Access Token
SMs
l o|
Tweet
User Access Token Secrat
Twilio [o l
Webhook Reply
ebhook Reply L.

Workflow B Properties © Debug = Globals # Storage

4.0 Smart Plant - Twitter Alerts 185

8. Create a Twitter Application

It’s time to pay Twitter a visit!

Login to Twitter with the account of your choice. Feel free to create a new one - your plant is special,
after all!

When you're in, visit https://apps.twitter.com where we’ll be able to create a new App to access Twitter’s
APIs:

© 00 /I o X/ W Twitter Application Manager x |\ Lazar
C | & Secure https://apps.twitter.com A AP0 Y :
W Application Management -

Es
Omega Twitter Reader
Reading the latest Tweet from a specified user

About Terms Privacy Cookies © 2017 Twitter, Inc.

| hitps:/japps.twitter.com/app/new

Give it a name, a description, and a website. The website can really be anything you wish - it will be
used by Twitter to give credit and send users for more information.

https://apps.twitter.com

186 Chapter 4. loT Projects

LI W Create an application | Twitie: X\ o
& C @ Secure hitps://apps.twitter. *| @O0y

Create an application

Application Details
Name *
=P Omega Smart Plant

Your appiication name. This Is used fo attribute the source of a tweet and in facing screens. 32 max.

Description *
—> Smart plant watering notification tool
Your application description, which wii be shown in user-facing authorization screens. Betweon 10 and 200 characters max.

Website *
w—- | hitps://onion.io
Your application’s publicly accessibie home page, where users can go to download, make use of, or find out more information about your appiication. This fully-qualified URL is used in the
source attribution for tweets created by your application and will be shown In user-facing authorization screens.
{if you don't have a URL yet, just put a placoholder here but remember to change It later)

Callback URL

Where shoulid we return after QAuth 1.0a shouid explicitly spacify their cauth_caliback URL on the request token step, regardiess of the value
given here. To restrict your appiication from using calibacks, leave this fieid biank.

Feel free to link it to this project!

Agree to the Twitter Developer Agreement - read it over if you can - and hit the Button to create your
App!

00 W Create an application | Twitter X\ Lazar
& C i Secure hitps://apps.twitter. f %" @O O0Y

Your application’s pubdicly accessibie home page, whene users can go fo download, make use of, or find out more information about your application. This fully-quaified URL is used in the
source attridution for tweets craated by your application and will be shown In user-facing authorization screens.
f you don't have a URL yet, just put a placeholder here but remember to change it Jater)

Callback URL

Where shouid we return after QAuth 1.0a should expiicitly specify thelr cauth_callback URL on the request token step, regardiess of the value
given heve. To restrict your appiication from using caiibacks, leave this fleid biank.

Developer Agreement
m==p £} Yes, | have read and agree to the Twitter Developer Agreement.

—)

About Terms Privacy Cookies © 2017 Twitter, Inc.

4.0 Smart Plant - Twitter Alerts 187

Welcome to your Twitter App!

Now let’s go and get what we came for: the API keys. Navigate to the ‘Keys and Access Tokens’ tab:

© 00 /I iosm X/ 9 Omega Smart Plant | Twitter + x| Lazar
« C & Secure https://apps.twitter.com/app/ | A0 Y
W Application Management 5

Your application has been created. Please take a moment to review and adjust your application's settings.

Omega Smart Plant st Ot
Details Settings Permissions

Smart plant watering notification tool
https://onion.io

Organization

Information abou ted with your application. This information Is optional.

Organization None

Organization website None

Application Settings

Your appiication's Consumer Key and Secr

ed to authenticate re

Access level Read and write (modify app permissions)

And you’ll be greeted with your Consumer Key and Consumer Secret:

© 00 /miosn x)vmwvmmms ;‘;Q o
<« C @ Secure https://apps.twitter.com/app/ Jkeys A9 O0Y
W Application Management -

Omega Smart Plant Test Ot

Detalis Settings Keys and Access Tokens Permissions

Application Settings

Keep the “Consumer Se a secret. This key should never be human-readable in your application.

— CONSUMer Key (API Key) I I S
— CONSUMEr SCret (AP Secret) R ——— e N
Access Level Read and write (modify app permissions)
Owner = —
Owner ID | —
Application Actions
Regenerate Consumer Key and Secret Change App Permissions

188 Chapter 4. loT Projects

If you think your keys have fallen into the hands of evil, you can always regenerate a new
pair here. The old ones will no longer be useable at all when you do this, so take care with
the regenerate button.

Copy the keys and head back to your workflow. Create CONSUMER_KEY and CONSUMER_SECRET global
variables to hold the values:

® 00 pmiosam x W Omega Smart Plant | Twitter - X Lazar
& C & Secure https://app.losant.com/#/applications/ sfworkflows /& " @O 0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar ~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

‘ « Filter Node Palette » |
i= Workflow Globals O]
Modify Event under globals atthe start of each workflow run.
Key Value Data Type
mQrT
LOW_MOISTL 35 Number &l &
SendGrid Key Value Data Type
Slack OK_MOISTUF 50 Number TR -
5 Key Value Data Type
Email
’ CONSUMER| String 3 =
SMS
Key Value Data Type
Tweet sy | CONSUMER & | | string 8 =
Twilio oata Type
String O
Webhook Reply

- |
- = 1
Workflow B Properties © Debug i Storage

Once the keys are in, it’s time to generate Access Tokens. Head back to Twitter and create a new access
token:

4.0 Smart Plant - Twitter Alerts 189

000 /| %/ 9 Omega Smart Plant | Twitter + X\ =
€« C & Secure https://apps.twitter.com/app/ [keys " @O0 Y
Application Actions

Regenerate Consumer Key and Secret Change App Permissions

Your Access Token

You haven't authorized this application for your own account yet.

By creating your access token here, /il have everything you need to make AP calis right away. The access token generated will be assigned your

application's current permission level,

Create my access token

© 2017 Twitter, Inc.

About Terms Privacy Cookies

Note the token values:

©00 /miosn %) Omega Smart Plant | Twiter / x|\ Lazar
“ C | @& Secure https://apps.twitter.com/app/ Ikeys #|ADOY

Your Access Token

This access token can be used 10 make AP/ requasts an your own account's bahall. Do not share your access token saecrat with anyone.

Access Token -

= == L —

Access Token Secret = — — <

Access Level Read and write

Owner = mma

Owner ID T—

Token Actions

Regenerate My Access Token and Token Secret Revoke Token Access

Just like with the consumer key and secret, create ACCESS_TOKEN and ACCESS_TOKEN_SECRET global
variables in the Losant Workflow to hold the Access Token values:

190 Chapter 4. loT Projects

® 00 miosam x {4 Omega SmartPlant | Twitter ~ x Lazar
&« C | & Secure https://app.losant.com/#/applications/! tworkflows/ * @O0Y :
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar ~

SmartPlant» Devices » Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

- Filter Node Palette "
i= Workflow Globals @
B Modify Event =
Key Value Data Type
< By
OK_MOISTUR 50 Number & =
¥ B sendGrid Key Data Type
(<3l Slack CONSUMER_| mXuNM¢ | String s =
- Email Key Value Data Type
CONSUMER_! fdRBpR?} String 8 =
L sms
Key Value Data Type
L A Tweet — ACCESS_TOKE § String 8t
Q Twilio Key Value Data Type
. | ACCESS_TOKE string s =Y
L0 Webhook Reply ‘
Key value Data Type
- =
I Workflow B Properties © Debug & Storage ’

Now we can put the keys into the Twitter node by referencing the global variables:

B Losant X | W Omega Smart Plant | Twitter © X Lazar

<« C @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa895dbea7820001dc29¢e1 w 909 0

LOSANT Dashboards ~ Applications ~

Smart Plant» Devices + Workflows v+ Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workfiow

44 Filter Node Palette

W Tweet (©)

In Oraer 10 TalK 10 IWITIEr, We Neea tne Lonsumer Key
(API Key) and Consumer Secret (API Secret) of your
Twitter application, as well as the Access Token and
Access Token Secret for the Twitter account to tweet
© Outputs A (6] under.

[+ 3 Store Value

~ Time Series

@ Time Range Application Consumer Key
% {{globals.CONSUMER_KEY}}

Debug

Device Command

Application Consumer Secret

Device State {{globals.CONSUMER_SECRET}}

Endpoint Reply

User Access Token

{{globals.ACCESS_TOKEN})

‘ Record Event

User Access Token Secret
HTTP 4
{{globals.ACCESS_TOKEN_SECRET}}

‘ Modify Event p= A\ J
roperues ebug = Globals torage

Come up with something you think your plant would say:

4.0 Smart Plant - Twitter Alerts 191

© 00 g iosan x 4 Omega SmartPlant | Twitter ~ X et
&« C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29%e1 T @O0 Y :
LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~

Smart Plant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
« Filter Node Palette »
L+l Store Value W Tweet @

~ Time Series
{{globals ACCESS_TOKEN_SECRET}}
© Outputs ~ 5}

Debug INPUT

Template of message to tweet.
Device Command

Device State Q@u = s Heyt It's your plant! Water me
please!
Endpoint Reply My soil moi: level is {{data.moi Nl
Record Event
Modify Event - =
B Properties © Debug Globals & Storage

And the Twitter Node is ready for action!

As good practice, let’s put in a debug message so we can easily see in the Debug Log when a Tweet should
have been sent out:

x | 4 Omega Smart Plant | Twitter .+ X ey

& C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 A AP0 Y :

hboards ~ Applications ~ Organizations ~ A lazar~

SmartPlant» Devices + Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow

“ Filter Node Palette

& Debug @

o Store Value

~ Time Series

Add Description
© Outputs ~ INPUT
Optional message for the debug node to include. The
Debug field is templatable.

Message

_> Notification Sent! {{data.moisture}}

Device Command

Device State

OUTPUT
Endpoint Reply
To only display a single property from the payload, add a
payload path below. Leave the field blank to display the
entire payload. If the property is not set on the payload,
the debug output will print undefined .

Record Event

HTTP +

Property

Modify Event =

B Properties © Debug = Globals Storage

192 Chapter 4. loT Projects

And connect it to the same trigger that will fire the Tweet - the moisture level Latch:

© 90 piosam x {4 Omega SmartPlant | Twitter © X Lazar
€ C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa395dbea7820001dc29e1 | @O O0OY
LOS ANT Dashboards ~ ENEIEHELER Organizations ~ § lazar ~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow

-« Filter Node Palette
[+ Store Value

~ Time Series

@ Connector @

¥Delete Connector

© Outputs N

Debug

Device Command

Device State

Endpoint Reply

Record Event

HTTP

Modify Event =

B Properties © Debug = Globals & Storage

8. Test Tweeting

It’s a good idea to test out smaller pieces first. So let’s make sure that our Tweet node works as intended.

First, set up a debug message to follow up on the Tweet event:

4.0 Smart Plant - Twitter Alerts 193

©00 muiosan x 4% Omega Smart Plant | Twitter - X Lazar
C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa395dbea7820001dc29e1 | @O0 Y :
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * £ Deploy Worldlow

“ Filter Node Palette

L3l Store Value © Debug ®

The Debug Node outputs the value of the payload at this
point in the workflow. The payload can be viewed in the
*Debug" tab below.

~ Time Series

© Outputs ~

Labe

Debug Debug

Device Command Add Description
INPUT
Device State

Optional message for the debug node to include. The
field is templatable.

Endpoint Reply

Message
Record Event Tweet Sent!
HTTP
OUTPUT
Modify Event - =
B Properties © Debug = Globals & Storage

Connect it to the Tweet node, this will let us know that a Tweet was attempted by Losant - successfully
or not.

Now let’s add a Button node so we can trigger the Tweet event on demand for testing:

® 00 pmiosam x | 7 Omega SmartPlant | Twitter + X Lazar

& C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 T OO0 Y :

LOSANT Dashboar Applications ~ Organizations ~ A lazar -~

SmartPlant» Devices + Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

FY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
“ Filter Node Palette ’
@ Time Range
¥ Triggers PN % A Workflow ®
Device Workflow Name
Smart Plant Notifications
On Connect

Description

On Disconnect Notify me when my plant needs water!

Endpoint
Event WORKFLOW STATUS
Enable or disable the running of this workflow.
marT
Enabled
imer
Virtual Button EXPORT
Virtual Button triggering of a virtual buttor +
Export your workflow to a file.
Webhook -

B Properties © Debug = Globals Storage

194 Chapter 4. loT Projects

The button needs a payload to send to the node it triggers.

The payload we used is this json string:

{"moisture":100}

Looking something like this:

® 00 puiosam % 4 Omega Smart Plant | Twitter © X Lazar
& C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53 /workflows/58fag95dbea7820001dc29e1 T OO0 Y
LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar -~
SmartPlant» Devices ~ Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
1 MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
<« Filter Node Palette -
¥ Triggers - @ virtual Button (©)
Device EXAMPLE PAYLOAD
On Connect = time": "2017-04-22T01:01:21.1282"

On Disconnect

v “data™:
“exampleNunber”: 3@
Butto "exampleString™: "bar"
“application]d”: “5Bf43e804433890001345253"

Endpoint *applicationName”: “Smart Plant™
“triggerId": “workflow_id-virtual_button_id"
Event *triggerType": “virtualButton"
“flowld”: “S8fa995dbea’820001dc29¢1"
“flowName": “Smart Plant Notifications™
MQTT » "globals":
" PAYLOAD
Timer
Data in JSON Format
Virtual Button —p {"M0isture": 108}
Webhook -
B Properties © Debug = Globals & Storage

Connect the button to the Tweet node and Deploy the Worflow:

4.0 Smart Plant - Twitter Alerts 195

00 s % {4 Omega Smart Plant | Twitter - x‘:;.'_‘ Lazar
& C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29%e1 T OO0 Y
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * £ Deploy Worldlow

Filter Node Palett Det o
- ter Node Palette . ' @ﬂmemm
¥ Triggers o . @ Connector @
Device ¥ Delete Connector
On Connect
On Disconnect
Endpoint
Event
mQrT
Timer
Virtual Button
Webhook o -
B Properties © Debug = Globals & Storage
And hit that sucker!
© 00 /o x {4 Omega Smart Plant | Twitter X el
& C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53 /workflows/58fag95dbea7820001dc29e1 T OO0 Y
LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar -~
SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
1 MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS
Fil de Palett ”
“ ter Node Palette & Det @ Time Range
¥ Triggers P o & Debug ®
Expand all properties Pause Clear
Device
On Connect

No debug logs yet.

On Disconnect

Endpoint

Event

marT

Timer

Virtual Button

Webhook

B Properties © Debug = Globals & Storage

We can see the ‘Tweet Sent!” Message in the debug log:

196 Chapter 4. loT Projects

® 90 piosam x {4 Omega Smart Plant | Twitter = X Lazar

C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa395dbea7820001dc29e1 | @O O0Y
LOSANT Dashboards ~ Applications ~

Organizations ~ 8 lazar -~

SmartPlant» Devices » Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

EY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS

e« Filter Node Palette @ Time Range -
¥ Triggers - S & Debug (©)

Expand all properties Pause Clear
Device
Debug
Tweet Sent! -
On Connect Fri Apr 21 2017 21:01:39 GMT-04:00
On Disconnect . Eicopy
time": Fri Apr 21 2017 21:01:39 GMT-8400
! v “data“:

Endpomt “moisture™: 100

spplicationId”: "SBf43c804433880001245253"
Event “triggerId®: "58fa995dbea7d20801dc29e1-5IGS5000X"

“triggerType": “"virtuslButton"
mQrT “relayld”: "5861bb32d5383301001d21cd"

relayType”: “user*
Timer “flowld": "SBf2995dbea7820001dc29e1"

"flowName™: "Smart Plant Notifications"

“applicationName™: “Smart Plant®
Virtual Button » *globals":
Webhook -

= B Properties © Debug = Globals Storage

And then check Twitter for the actual tweet:

What'’s happening? (O]

B mmmw 128 v
@ Hey! It's your plant! Water me please!
My soil moisture level is 100%!

Looks like the Twitter node is working as expected!

9. Complete the Workflow

Now that we’re done testing the Tweet node, let’s delete the Button block and finish the Workflow.
Connect the Twitter Node to the true path of the Latch node:

4.0 Smart Plant - Twitter Alerts 197

©00 muiosan x 4% Omega Smart Plant | Twitter - X Lazar
C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa395dbea7820001dc29e1 | A9 0Y
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * £ Deploy Worldlow

“ Filter Node Palette

@ Connector ®

¥ Delete Connector

¥ Triggers N
Device

On Connect & Debug
On Disconnect
Endpoint
Event

mQrT

Timer

Virtual Button

Webhook

B Properties © Debug = Globals & Storage

This ensures the Twitter node will be activated (just once) when the Latch condition is true, that is,
when the soil moisture level drops below the value we set for the LOW_MOISTURE global variable. Note that
because of the Latch, the Twitter node will not be activated again until the plant is watered enough so
that the soil moisture level rises above the value set for the OK_MOISTURE global variable.

Now Deploy the workflow and we’re done!

198

Chapter 4. loT Projects

© 00 pmiosan % {4 Omega Smart Plant | Twitter © X
€« C | @ Secure https://app.losant.com/#/applications/58143e804d33880001a45a53 /workflows/58fag95dbea7820001dc29e1
LOSANT Dashboards ~ Applications ~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

EY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS

-« Filter Node Palette

¥ Triggers A
Device

On Connect

On Disconnect

Endpoint

Event

MQrT

Timer

Virtual Button

Webhook

Going Further

Lazar
| @O0 Y
Organizations ~ 8 lazar -~
»
A Workflow ®
Workflow Name
Smart Plant Notifications
Description
Notify me when my plant needs water!
WORKFLOW STATUS
Enable or disable the running of this workflow.
@ Enabled
EXPORT
Export your workflow to a file.
B Properties © Debug = Globals & Storage

You can extend the Losant workflow to send more types of notifications, such as an SMS text message,
email, or even a command to another device. But wouldn’t it be nice if we could tell the Omega to water

the plant for us?

Smart Plant - Automatic Plant Watering

Now that our plant is smart enough to Tweet us when it needs water, let’s see if we can make it even
smarter and have it water itself! For this project, we’ll add a water pump to our work in Smart Plant

Part 3 so we can automate the watering process.

4.0 Smart Plant - Automatic Plant Watering 199

Overview

Skill Level: Intermediate-Advanced
Time Required: 1 Hour

For this project, we’ll be using the Relay Expansion to switch a water pump on and off, enabling our
smart plant to water itself! To do that, we’ll build a circuit to power the water pump, and use the Relay
Expansion Python Module to control the pump with out script.

Once our pump works as expected, we’ll build a new Losant workflow to test it out. Finally, we’ll add
it to the Losant workflow we’ve built in Smart Plant Part 3 to get our plant to water itself!

The complete project code can be found in Onion’s smart-plant repo on GitHub.

Ingredients

We'll need all of the same materials as in the previous parts:

e Onion Omega2 or Omega2+
e Onion Arduino Dock 2
e Onion OLED Expansion (optional but recommended)

https://docs.onion.io/omega2-docs/relay-expansion-python-module.html
https://docs.onion.io/omega2-docs/relay-expansion-python-module.html
https://github.com/OnionIoT/smart-plant
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/

200 Chapter 4. loT Projects

e Soil Moisture Sensor
e 3x Male-to-Female Jumper Wires

And some new ingredients:

e Onion Relay Expansion

e DC Barrel Jack Adapter

e 12V 1A DC Power Supply

e 3x Male-to-Male Jumper Wires

o Water Pump (12V DC)

e Flexible Plastic Tubing

— Make sure to match the tubing’s inner diameter (ID) is slightly less than the pump’s ports’

outer diameter (OD). This is so the tubing will stretch and grip the ports, preventing any
leaks!

o A piece of paper the size of your hand to test the pump’s polarity

« A plate or bowl to hold your plant and collect excess water

o A glass or bowl of water you can use as a reservoir

Tools:

o Flat-head screwdriver
e Philips-head screwdriver

If your pump does not come with wires attached, then you will need:

e Electrical Tape
o Wire Cutters
e Wire Strippers

https://www.amazon.com/gp/product/B00AFCNR3U/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00AFCNR3U&linkId=3bab7d579024c0b4b08adbf86379e3c3
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://onion.io/store/relay-expansion/
https://www.amazon.com/gp/product/B00ZGDF7AY/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B00ZGDF7AY&linkCode=as2&tag=onion0e-20&linkId=5d39734cc06c3916099832cb4748a245
https://www.amazon.com/gp/product/B019X3XVWS/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B019X3XVWS&linkCode=as2&tag=onion0e-20&linkId=7e3fcbbeb2bf474a33f4d68a7413fc21
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://www.amazon.com/gp/product/B0185LGNXI/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0185LGNXI&linkId=e43bfb26ea054d3814f17af1927d5cb0
https://www.amazon.com/gp/product/B000E62TCC/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B000E62TCC&linkId=3a1c10546202dc13973c44b10b710796
https://www.amazon.com/gp/product/B00B9HIBZE/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00B9HIBZE&linkId=2a8024f4a477526f112ba27c772e1d4c
https://www.amazon.com/gp/product/B00B9HIC08/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00B9HIC08&linkId=4460dbd61a530702a5283b7f1fc3e558
https://www.amazon.com/gp/product/B001B19JLS/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B001B19JLS&linkId=38b920e50fa76624fa159c9de379da38
https://www.amazon.com/gp/product/B00FZPDG1K/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00FZPDG1K&linkId=da863e47a2ed2006e1b78c13d1c1c0a0
https://www.amazon.com/gp/product/B0000302WM/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0000302WM&linkId=0163bdb27332986665ec8254b1904099

4.0 Smart Plant - Automatic Plant Watering 201

Step-by-Step

Follow these instructions to set this project up on your very own Omegal

1. Prepare

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Complete the Previous Parts of the Project

This project builds on the previous parts of the Smart Plant project. If you haven’t already completed
the first, second, and third parts, go back and do them now!

3. Install Required Software on the Omega

To control the Relay Expansion from a Python program, you’ll need to install the Onion Relay Expansion
Python Module:

https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/relay-expansion-python-module.html
https://docs.onion.io/omega2-docs/relay-expansion-python-module.html

202 Chapter 4. loT Projects

opkg update
opkg install pyRelayExp

4. Prepare the Pump

Let’s prepare the pump so that we can connect it to our circuit. We’ll be doing a few sub-steps here:

. Preparing the Power leads

. Connecting to the Barrel Jack Adapter
. Locating the Inlet and Outlet

. Determining the Polarity

B~ W N

Preparing the Power Leads

Not all water pumps come with wires attached to the 2 power leads on the back/top. If yours does, skip
to the “Wire the Pump” step.

If yours does not, you will need to put the wires together and determine the pump motor’s polarity. This
is extremely important because connecting it wrong will, at best, reverse the in and out ports and, at
worst, break the pump!

Take two pieces of jumper wire, one red and one black, and strip about 1” from the ends. Some pumps
without wires attached may have a marking for where to attach the red wire; examine your pump thor-
oughly for any hints. If you can find a marking, loop the bare end of the red wire through the hook. Just
twisting it around and then covering it with electrical tape is enough. Repeat for the black wire.

If there are no markings, connect them to the leads whichever which way. If the order happens to be
wrong, you can switch them later.

4.0 Smart Plant - Automatic Plant Watering 203

Connecting to the Barrel Jack Connector

With the 12V power supply not plugged in yet, connect the other end of the red wire to the (4) terminal
on the barrel jack adapter, and the other end of the black to the (-) terminal.

The screw terminal on the barrel jack adapter will rise and sink depending on the clamp
position. When the screw is roughly flush with the top, it is open. To attach a wire, insert
it into the terminal and turn the screw clockwise until it sinks to about halfway, or until it
becomes difficult to continue turning.

204 Chapter 4. loT Projects

Locating the Inlet and Outlet

Examine your pump’s instruction manual (if there is one) or the ports to see if there are any markings or
labels for “IN” and “OUT”. Our pump had them in raised letters on the plastic housing:

4.0 Smart Plant - Automatic Plant Watering 205

.

Determining Polarity

Now we will briefly run the pump to make sure the polarity of the motor is correct.

There is a risk of it overheating when running the pump “dry” without water for extended
periods of time. This is because some pumps rely on water for cooling. Try not to leave it on
for more than 10 seconds to avoid the risk of damage to your pump.

Prepare a small piece of paper about the size of your hand. Then plug in the 12V power supply and hear
your pump come to life!

Move the piece of paper towards the outlet.

o If it gets blown away from it, the polarity is correct.
o If it gets sucked towards it, the wiring is backwards.

Unplug the power supply and remove the two wires from the barrel jack adapter. If the polarity is
backwards, switch where the red and black wires are connected to the pump.

e The terminal on the pump where the red wire should be connected is known as the positive (+)
terminal.
o Likewise, the place where the black wire should be connected is the negative (-) terminal.

206 Chapter 4. loT Projects

Optional - Solder the Terminals

If you want, you can solder the wires to the pump terminals to make the connections more secure. You’ll
need to remove the electrical tape, solder the terminals, then replace the tape again.

Please familiarize yourself with proper soldering technique and safety procedures when working with
soldering irons, as there is a risk of injury due to the high heat!

If you are not comfortable soldering, try finding a friend or professional who can quickly solder it for you.
Or practice soldering wires together and then work your way up to soldering on actual electronics.

Note: Solder at your own risk, Onion is not responsible for any injury or damage!

5. Connect the Pump to the Omega

We’ll wire up the Water Pump with the Relay Expansion before connecting the Relay Expansion to the
Dock.

To set up the terminals on the Relay Expansion, turn the screw on the terminal counterclock-
wise until the metal clamp inside is sitting a bit less than halfway in the bottom of the housing,
not too much or the screw might pop out.

1. Run a jumper wire from the negative terminal of the DC Barrel Jack Adapter to the negative
terminal of the water pump.

4.0 Smart Plant - Automatic Plant Watering 207

1. Run a jumper wire from the positive terminal of the DC Barrel Jack Adapter to the IN screw
terminal on Channel 0 of the Relay Expansion.

1. Run a jumper wire from the OUT screw terminal on Channel 0 of the Relay Expansion to the
positive terminal of the water pump.

208 Chapter 4. loT Projects

6. Connect the Relay Expansion and Provide Power

Grab your Smart Plant Omega and Arduino Dock and unplug it from power. Take off the OLED
Expansion and plug in your freshly wired Relay Expansion.

4.0 Smart Plant - Automatic Plant Watering 209

You can then plug the OLED Expansion into the Relay Expansion.

Power the Omega and Arduino Dock through the Micro-USB port and connect the 12V power supply to
the DC Barrel Jack Adapter:

210 Chapter 4. loT Projects

7. Test your Setup

When your Omega boots up again, login to the Omega’s command line and run the following command
to turn on the relay connected to the water pump:

relay-exp O on

Your pump should now come to life!

Turn off the pump for now by running the following;:
relay-exp O off

For more info on the relay-exp command, see our Relay Expansion documentation.

8. Tubing and Sensor Setup

Before we connect the tubing, disconnect the motor from the circuit. This is so you can more easily work
with the pump and avoid spilling water on your components.

Place your plant in the plate to catch any excess water. Then prepare a water reservoir; it can be as
simple as a big drinking glass. Then measure a length of tubing that would go from the bottom of your
reservoir to the inlet of the pump. Cut off the tubing, then first fit one end to the pump’s inlet. Make
sure it’s snug and tight to avoid leaks!

https://docs.onion.io/omega2-docs/using-relay-expansion.html

4.0 Smart Plant - Automatic Plant Watering 211

Then insert the other end into your reservoir. We recommend securing it to the reservoir using some tape
so that the tubing stays safe.

Repeat this process for another piece of tubing that will go from the pump outlet to your plant.

212 Chapter 4. loT Projects

Now connect the motor back to the circuit. Then reconnect the moisture sensor:

1. Connect the Arduino Dock’s 5V pin to the sensor’s Vcc pin.
2. Connect the Arduino Dock’s GND pin to the sensor’s GND pin.
3. Connect the Arduino Dock’s A0 pin to the sensor’s SIG pin.

and plug in the power supplies for the Omega and pump:

4.0 Smart Plant - Automatic Plant Watering 213

The Omega should now be booting.

9. Stop the Existing Program

In the first part of the project, we added a script to /etc/init.d to automatically run the smart plant
program on boot. We’ll now need to stop the program before running it again manually.

Run the following command:

/etc/init.d/smart-plant stop

10. Pump Calibration

We’'ll need to play with the pump a little to see how long it should be enabled in order to properly water

the plant.

Let’s first run the Smart Plant program with the pump option enabled:

python /root/smart-plant/smartPlant.py --oled --quiet --losant /root/smart-plant/losant.json --pu

The --pump option enables receiving and reacting to commands from Losant. It calls the pumpWater ()
function that accepts a duration in seconds for how long to turn the pump on.

214 Chapter 4. loT Projects

Now, let’s create a Losant workflow where we can use a virtual button to turn on our pump. We'll use
this workflow now to find the optimal watering duration for your plant, and then afterwards you can use
it to water your plant from anywhere in the world!

Head over to Losant.com and log in. Select your Smart Plant Application, click on the Workflows menu
and then Create Workflow. Give your workflow a name and a description:

0@ Losant x Lazar

&« C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/new T O9 &

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar -~

s v Workflows ~ Events Security

1 MY SANDBOX / SMART PLANT / NEW WORKFLOW

Workflows are your ices. Depending on device

states or other exter the physical world

Pump Testing

Test working with a water pump|

Cancel

Add a Virtual Button block to your workflow:

https://www.losant.com/

4.0 Smart Plant - Automatic Plant Watering 215

[N N] B Losant x Lazar

&« C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/wor

LOSANT Dasl Applications ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / PUMP TESTING

B »
= A Workflow @
Device
Pump Testing

On Connect

De
On Disconnect Test working with a water pump
Endpoint
Event WORKFLOW STATUS

Enable or disable the running of this workflow.
MQTT

@ Enabled
Timer

Virtual Button

f a virtual button

EXPORT

On triggering

Virtual Button
Export your workflow to a file.

Webhook =

B Properties © Debug Globals & Storage

For completeness, have the button send a payload:

v

& Secure https://app.losant.com/#/applications/58f43e804d338 1a45a53/workflows/58ffb6f4b46aec000172306 i
& (¢] S h { 8f43e804d3388000 5a53 fl 58ffb6f4b46 000172306f W ao

Applications ~ Organizations ~

LOSANT Dasl

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / PUMP TESTING * 2 Deploy Workflow
- r er »
¥ Triggers " @ virtual Button ®
O Virtual Button
Device > _button_id"

t : “virtualButton"
flowld“: “58ffb6f4babaecORR1723061"

On Connect

“flowNane": “Pump Testing"

globals”:
On Disconnect

PAYLOAD
Endpoint Dat. at
(‘ moisture” 133)

Event
marT
Timer

Virtual Button

Webhook ~

B Properties © Debug Globals # Storage

Now add a Device Command block:

216 Chapter 4. loT Projects

[N N] Losant x Lazar

= C & Secure https://app.losant.com/#/appl

58f43e804d33880001a45a53

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar ~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

[MY SANDBOX / SMART PLANT / PUMP TESTING * 2 Deploy Workflow
“ command »
¥ Triggers ~ (‘ @ virtual Button
O Virtual Button
@) Experience ~ S g
<> Logic ~
© Data ~ globals®:
PAYLOAD
© Outputs N
Device Command Devics Command = {"moisture":33}
i B Properties © Debug Globals & Storage

Set it up to use the device associated with your Smart Plant Omega, in our case, that was omega-f11d:

[X N Losant x Lazar

&« C | & Secure https://app.losant.com/#/applica

58f43e804d33880001a45a53 /workflow

LOSANT Dashboards ~ Applications ~ Organizations ~ A lazar~

SmartPlant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

[MY SANDBOX / SMART PLANT / PUMP TESTING * 2 Deploy Workflow
« command »
¥ Triggers ~ 2 Device Command
O Virtual Button
@) Experience ~ o, Select the device(s) to send the command to.
<> Logic ~ © Select specific devices and tags
© Data ~

* @ omega-fid x w
© Outputs N

N Use Device iD{(s) specified on the current payload
Device Command

N Path

COMMAND

Set up the command and command payload to send. The
payload, while a template, must render to a valid JSON
string

B Properties © Debug Globals @ Storage

Now we need to setup the command to send to the device. The name of command the program on the
Omega is expecting is waterPlant, the payload is a string that is the number of seconds to keep the

4.0 Smart Plant - Automatic Plant Watering 217

pump enabled. In our case, we started with 4 seconds:

[X N} Losant x Lazar

rkflows/58ffb

58f43e804d33

< C | @& Secure https://app.losant.com/#/ap

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar -~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / PUMP TESTING * AiDvoioy aekow

-« command »

2 Device Command

¥ Triggers A
O Virtual Button
@) Experience ~
V
waterPlant
<> Logic ~
Pay
© Data A~ String Template s
© Outputs ~ Payload String Templat
fiagE=at 4
Device Command
- B Properties © Debug Globals & Storage

Let’s also add a Debug block:

0o Losant x Lazar
flao YW

ns/58f43e804d33880001a45a53 /workflow:

= C | & Secure https://app.losant.com/#/applica

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar -~

Smart Plant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / PUMP TESTING * 2 Deploy Workflow
-« debug >
¥ Triggers ~ @ Connector
@) Experience N ¥ Delete Connector
<> Logic ~
© Data -~
© Outputs N
=l Debug Outputs
= B Properties © Debug Globals & Storage

Set the debug message to something simple so we know our button click has gone through, and Deploy

218 Chapter 4. loT Projects

the workflow:

L Losant x Lazar
€ C @& Secure https://app.losant.com/#/api 5/58f43e804d33880001a45a53/workf| | A0 Y
LOSANT Dashboart Applications ~ Organizations ~ 8 lazar -~
SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings
Y MY SANDBOX / SMART PLANT / PUMP TESTING * AiDvwicy aekow
4+« debug »
¥ Triggers A & Debug
@) Experience ~ The Debug Node outputs the value of the payload at this
point in the workflow. The payload can be viewed in the
“Debug" tab below.
<> Logic ~
© Data A Debug
© Outputs N Add Description
INPUT
Optional message for the debug node to include. The

field is templatable.

command sent!

OUTPUT

B Properties 0 Debug Globals & Storage

Try pressing the button and seeing how much water actually makes it to your plant:

[N N J Losant X Lazar
“ C | @& Secure https://app.losant.com/#/app " A0 Y

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~
SmartPlant» Devices v Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

E1 MY SANDBOX / SMART PLANT / PUMP TESTING

4« debug »
¥ Triggers PN & Debug
pand all properties a f
@’ Experience ~
Debug
<> Logic ~ Eomlmat\ﬂ serft.! -
© Data N y ,
S 201 0 GMT-0400
© Outputs ~ v

58f43c804d33800001245253"

b6 4ba62ecOBO172306 f-HyXuvEalx

rtualButton"

32d5383301001d21cd"

462cc000172306¢"

Plant*

& Properties 0 Debug Globals @ Storage

https://app.losant.com/#
T ——

Experiment with the payload of the Device Command block to see how much water suits your plant. Also,

4.0 Smart Plant - Automatic Plant Watering 219

keep in mind the LOW_MOISTURE and OK_MOISTURE levels we set in the previous part of the project, when
your plant is watered at the LOW_MOISTURE level, the amount of water added should take it back up above
OK_MOISTURE level.

We recommend starting at 1 second and adjusting from there to avoid accidentally overflowing. In our
lab, we found a duration of 3 seconds to work well, but this depends on both your pump and plant.

11. Update Program Run at Boot

Since we now need to run the Smart Plant program with additional arguments to use the pump, we’ll
need to update the /etc/init.d/smart-plant file.

Open the /etc/init.d/smart-plant file using the Vi editor: vi /etc/init.d/smart-plant. Hit i and
use the arrow keys to navigate to the line that says BIN="usr/.... After the ...losan. json text, insert
a space and type the following:

~~pump
and insert a space between —--pump and the > character.
Your smart-plant file should now look like this:

#!/bin/sh /etc/rc.common
Copyright (C) 2016 Onion Corporation
START=99

USE_PROCD=1
BIN="/usr/bin/python /root/smart-plant/smartPlant.py --oled --quiet --losant /root/smart-plant/lo

start_service() {
procd_open_instance
procd_set_param command $BIN
procd_set_param respawn
procd_close_instance

Hit esc and type :wq to save and close the file.
Then re-enable the program:
/etc/init.d/smart-plant restart

Try rebooting your Omega (enter reboot in the command line), and you’ll see that your program will
start up again when the Omega boots up.

12. Update the Existing Workflow

To make our smart plant truly automated, we need to add sending the waterPlant command to the
notification workflow made in the previous part of the project:

220

Chapter 4. loT Projects

® 00 miosam x Lazar
&« C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 * A9 Y W
LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~
SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings
EY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS
+« debug I
¥ Triggers PN A Workflow ®
@ Experience ~ Workflow Name
Smart Plant Notifications
<> Logic ~ [5)
@ Ti Description
ime Range
© Daa 2 Notify me when my plant needs water!
© Outputs ~
n Debug WORKFLOW STATUS
Enable or disable the running of this workflow.
@ Enabled
EXPORT
Export your workflow to a file.
B Properties © Debug = Globals & Storage

{ https:/japp.losant.com/#

Add a Device Command Block to the bottom:

® 90 pmiosam
& C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53 /workflows/58fag95dbea7820001dc29e1

LOSANT

x

Dashboards ~

Applications ~

Organizations ~

8 lazar ~

Smart Plant »

Devices ~

Workflows ~ Events

Security

Experience

Webhooks Recipes Data Explorer

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS

Settings

—_—
4« command »
¥ Triggers A A Workflow ®
@ Experience ~ Workflow Name
Smart Plant Notifications

<> Logic ~

Description
© Data 2 Notify me when my plant needs water!
© Outputs PN

. Device Command

Device Command

WORKFLOW STATUS

Enable or disable the running of this workflow.

Enabled

EXPORT

Export your workflow to a file.

B Properties © Debug = Globals & Storage

Like before, we need to set it up to use the device associated with your Smart Plant Omega:

4.0 Smart Plant - Automatic Plant Watering 221

® 00 miosam x \UR Lazar
&« C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 * A9 Y W
LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~
SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings
Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
—_—
4« command »
¥ Triggers A 2 Device Command ®
2 DEVICES
@ Experience A~
Select the device(s) to send the command to.
<> Logic ~
) Select specific devices and tags
© Data N
Device 10s / Tags
© Outputs - * @ omega-fnd x -

Use Device 1D{(s) specified on the current payload

Device Command

Device ID{s) JSON Path

COMMAND

Set up the command and command payload to send. The

amdand nblia s tnmalnte mount sandassa u mild AL

B Properties © Debug = Globals & Storage

Create a global variable, PUMP_DURATION to store the duration for which the pump will be active:

Lazar

® 090 'muiosan x

&« C | @ Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53 /workflows/58fa895dbea7820001dc29e1 A A9 Y &

Organizations ~ 8 lazar ~

LOSANT Dashboards ~ Applications ~

SmartPlant» Devices » Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
«« debug P
¥ Tiggers " i= Workflow Globals ®
@) Experience ~ Key value Data Type
<> Logic ~ CONSUMER_| mXuNM¢ String 8 =
° o Key Value Data Type
ata S
CONSUMER_! fdRBpR String : -
© Outputs N
Key Value Data Type
n Debug ACCESS_TOKE 2753556t String =
Key Value Data Type
ACCESS_TOKE iALYZf8b String $ ——
Key Value Data Type
PUMP_DURA" 7 String $ =
Key value Data Type
n: — B Properties © Debug = Globals & Storage

Now, go back to the Device Command block to setup the command name and payload. It will be the
same as in the testing workflow used above, just this time, use {{globals.PUMP_DURATION}}, the global

222 Chapter 4. loT Projects

variable we just created:

® 00 miosam x Lazar
= C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa895dbea7820001dc29e1 " QO Y W
LOS ANT Dashboards ~ ENEIEHELER Organizations ~ § lazar ~
SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings
Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
« debug @ Time Range "
¥ Triggers o & 2 Device Command @
@) Experience ~ COMMAND
Set up the command and command payload to send. The
<> Logic ~ payload, while a template, must render to a valid JSON
string.
© Data 2 Command Name Template
© Outputs A waterPlant

Command Payload Type

String Template

n o

Command Payload String Template

{{globals.PUMP_DURATION}}

B Properties © Debug = Globals & Storage

Connect the Device Command block to the output of the Tweet block so that the plant gets watered right

after the Tweet is sent out:

® 00 miosam x Lazar
< C | & Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fa995dbea7820001dc29e1 *| A0 Y &
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar -~

SmartPlant» Devices » Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

FY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow

Y —

« command »
¥ Triggers o @ Connector @
@ Experience ~ ¥ Delete Connector

<> Logic ~

© Data PN

© Outputs N

- Device Command

B Properties © Debug = Globals # Storage

4.0 Smart Plant - Automatic Plant Watering 223

Let’s also add a Debug block that will output that the command indeed got sent out:

[X N} B tosant x \ER Lazar
&« C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 Y A9 Y W

LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar ~

SmartPlant» Devices » Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings

Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * 2 Deploy Workflow
4« debug »
¥ Triggers P & Debug @
’,ﬁ« Experience -~ The Debug Node outputs the value of the payload at this
g point in the workflow. The payload can be viewed in the
“Debug" tab below.
<> Logic ~
Labe
© Data ~ Debug
© Outputs A Add Description
INPUT

Optional message for the debug node to include. The
field is templatable.

u o

Message

rPlant, duration {{globals.PUMP_DURATION}} sent!

OUTPUT
— B Properties © Debug * Globals & Storage
It might also be a good idea to change the contents of the Tweet:
©00 miosam x \R Lazar
&« C | & Secure https://app.losant.com/#/applications/5 fworkflows/5 " Q0O Y
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~
SmartPlant» Devices » Workflows + Events Security Experience Webhooks Recipes Data Explorer Settings
Y MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS * * Deploy Workflow
«« debug b 3
¥ Triggers A~ W Tweet (0]
@) Experience A User Access Token Secret
{{globals.ACCESS_TOKEN_SECRET}}
<> Logic ~
© Data ~ INPUT
Template of message to tweet.
© Outputs PN
Tweat Template
n Debug @ s Heyt It's your plant! My soil
moisture level is {{data.moisture}}% so my
Omega is watering me!
= = B Properties o Denug. * Globals @ Storage

Connect the Debug block to the Device Command block and hit Deploy Workflow:

224

Chapter 4. loT Projects

00 s x\! Lazar
& C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 A OO Y & :
LOSANT Dashboards ~ Applications ~ Organizations ~ 8 lazar~

SmartPlant» Devices + Workflows » Events Security Experience Webhooks Recipes Data Explorer Settings

1 MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS

Y S ——

4« debug I
¥ Triggers X @ Connector @
@) Experience ~ ¥ Delete Connector

<> Logic ~

© Data N

© Outputs ~

n o

B Properties © Debug = Globals & Storage

13. Sit Back and Relax

Now whenever your plant’s soil moisture level falls below the level in the LOW_MOISTURE global variable,
your plant will water itself and alert you with a Tweet!

4.0 Smart Plant - Automatic Plant Watering 225

[N N] B Losant x Lazar

& C | @& Secure https://app.losant.com/#/applications/58f43e804d33880001a45a53/workflows/58fag95dbea7820001dc29e1 X A Y W

LOSANT Dashboards ~ [EENENEHELERS Organizations ~ § lazar ~

SmartPlant» Devices + Workflows v Events Security Experience Webhooks Recipes Data Explorer Settings

EY MY SANDBOX / SMART PLANT / SMART PLANT NOTIFICATIONS

4« debug »
¥ Triggers A & Debug @
Expand all properties Pause Clear
@ Experience PN
Debug
<> Logic A waterPlant, duration 7 sent! -~
Tue Apr 25 2017 1711:56 GMT-04
© Data N o
time": Tue Apr 25 2017 17:11:53 GMT-8480
© Outputs PN v “data®
“moisture: 33
spplicationld”: "SBf430804433880001245253"
Osbug triggerId" 1d713ebea’820801dc2a1e"
triggerType: "deviceld”
relayld™: "58fd713ebea?820001dc2ale"
relayType"
» “deviceT
deviceN
flowld": “SB8fa995dbea?820001dc29¢1"
flowName™: “Smart Plant Notifications™
applicationName™: “Smart Plant"
— B Properties © Debug Globals & Storage

Hey! It's your plant! My soill
moisture level is 32% so my Omega is
watering me!

3:26 PM - 25 Apr 2017

ﬁ Tweet your reply

You'll have to experiment with the LOW_MOISTURE, OK_MOISTURE, and PUMP_DURATION variables to see
what is best for your plant.

Wow, you’ve made your plant so smart that all it needs is for you to refill the water reservoir!

Now if only there were some way to make this project truly plug ‘n’ play...

226 Chapter 4. loT Projects

Smart Plant - A Single Power Supply

We’ve built out some really cool features on our smart plant in the previous parts. Now to top it all off,
let’s upgrade the power circuitry so we can run the entire project on a single 12V power supply!

Overview

Skill Level: Intermediate
Time Required: 20 minutes

When you were building the smart plant, you had to power the pump and Arduino separately. Let’s
change that by replacing the USB power supply with a regulator that can convert the motor’s 12V into
5V. This way, when you plug in the 12V supply, the entire project comes to life!

Ingredients

We’ll need all of the same materials as in the previous part:
e Onion Omega2 or Omega2+

e Onion Arduino Dock 2

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/arduino-dock-r2/

4.0 Smart Plant - A Single Power Supply

227

Onion OLED Expansion (optional but recommended)

Soil Moisture Sensor

3x Male-to-Female Jumper Wires

Onion Relay Expansion

DC Barrel Jack Adapter

12V 1A DC Power Supply

3x Male-to-Male Jumper Wires

Water Pump (12V DC)

Flexible Plastic Tubing

A piece of paper the size of your hand to test the pump’s polarity
A plate or bowl to hold your plant and collect excess water

A glass or bowl of water you can use as a reservoir

WEe’ll need some new ingredients:

MC33269T 5V Linear Voltage Regulator
A Breadboard
10x Male-to-Male Jumper Wires

Tools:

Flat-head screwdriver
Philips-head screwdriver

Step-by-Step

Follow these instructions to set this project up on your very own Omegal

1. Prepare

You’ll have to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

2. Complete the Previous Parts of the Project

This project builds on the previous parts of the Smart Plant project. If you haven’t already completed
the first, second, third, and fourth parts, go back and do them now!

3. Prep

Before you start, take apart the wiring and tubing we did in the previous part of the project and unplug
your Arduino Dock. Now you should have:

https://onion.io/store/oled-expansion/
https://www.amazon.com/gp/product/B00AFCNR3U/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00AFCNR3U&linkId=3bab7d579024c0b4b08adbf86379e3c3
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://onion.io/store/relay-expansion/
https://www.amazon.com/gp/product/B00ZGDF7AY/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B00ZGDF7AY&linkCode=as2&tag=onion0e-20&linkId=5d39734cc06c3916099832cb4748a245
https://www.amazon.com/gp/product/B019X3XVWS/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B019X3XVWS&linkCode=as2&tag=onion0e-20&linkId=7e3fcbbeb2bf474a33f4d68a7413fc21
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://www.amazon.com/gp/product/B0185LGNXI/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0185LGNXI&linkId=e43bfb26ea054d3814f17af1927d5cb0
https://www.amazon.com/gp/product/B000E62TCC/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B000E62TCC&linkId=3a1c10546202dc13973c44b10b710796
https://www.amazon.com/gp/product/B005T8UNAA/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B005T8UNAA&linkId=59d5aaa60ba8d1745b32f3602e0280b3
https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://www.amazon.com/gp/product/B00B9HIBZE/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00B9HIBZE&linkId=2a8024f4a477526f112ba27c772e1d4c
https://www.amazon.com/gp/product/B00B9HIC08/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00B9HIC08&linkId=4460dbd61a530702a5283b7f1fc3e558
https://docs.onion.io/omega2-docs/first-time-setup.html

228 Chapter 4. loT Projects

IMPORTANT: Make sure your Power Supply is no longer connected to the DC Barrel Jack Adapter!

4. Wiring the Circuit

This is the pinout diagram for the MC33269T. We’ll be referring back to this when wiring it up.

O
TO-220AB
T SUFFIX

CASE 221AB

1. GND/AGj

2. Vour

3.V, 123

(Top View)

We’ll assemble the circuit in a few sub-steps:

1. Regulator input
2. Regulator output
3. Water pump

4.0 Smart Plant - A Single Power Supply 229

4. Arduino Dock
5. Moisture sensor

Regulator Input

1. Connect jumper wires to both DC Barrel Jack Adapter terminals.

2. Connect the DC Barrel Jack to one pair of the + and - rails on the breadboard.
o We'll call this the 12V rail.

3. Plug the MC33269T regulator into the Breadboard across three empty rows.

4. Connect the 12V - rail to the GND pin of the regulator with a jumper wire.
e The left most pin when looking from the front.

5. Connect the 12V + rail to the Vin pin of the regulator with a jumper wire.
e The right most pin when looking form the front.

Regulator Output

1. We'll use the other pair of + and - rails on the breadboard for our 5V rail

2. Connect the GND pin of the regulator (left most pin when looking from the front) to the 5V - rail
with a jumper wire

3. Connect the Vout pin of the regulator (middle pin) to the 5V + rail with a jumper wire. Now this
rail can be used to power the Arduino Dock and Omega

230 Chapter 4. loT Projects

Water Pump

1. Run a jumper wire from the 12V -rail to the negative terminal of the Water Pump
2. Connect a jumper wire from the 12V +rail to the IN screw terminal on Channel 0 of the Relay
Expansion

3. Connect a jumper wire from the OUT screw terminal on Channel 0 of the Relay Expansion to the
positive terminal of the Water Pump

4.0 Smart Plant - A Single Power Supply 231

Once you’ve done that, plug the Relay Expansion back into the Arduino Dock.

Arduino Dock

WARNING: It is very important that you connect the 5V rail to your Arduino Dock. Ac-
cidentally using the 12V rail will for sure damage your Arduino Dock and Omega. Proceed
at your own risk, but don’t worry, if you follow the instructions, you’ll be fine.

1. Connect the 5V - rail to one of the Arduino Dock’s GND pins
2. Connect the 5V + rail to the Arduino Dock 5V pin

232 Chapter 4. loT Projects

Then plug in the OLED Expansion.

4.0 Smart Plant - A Single Power Supply 233

Moisture Sensor

Using the wires from the moisture sensor:

1. Connect the 5V + rail to the sensor’s Vcc pin.
2. Connect the Arduino Dock’s other GND pin to the sensor’s GND pin.
3. Connect the Arduino Dock’s A0 pin to the sensor’s SIG pin.

234 Chapter 4. loT Projects

5. Provide Power

Now reassemble your pump tubing, reservoir, sensor, and plant:

4.0 Smart Plant - A Single Power Supply 235

Then provide power by connecting the 12V power supply to the DC Barrel Jack Adapter. Your Omega
should now be booting.

Congratulations, You Made It!

Revel in the fact that you've created a regulator circuit that can power your Omega as well as the 12V
pump!

236 Chapter 4. loT Projects

Show off your amazing smart-plant setup and Dashboards on our Community Forum, and let us know
how you liked these tutorials!

Temperature-Based Smart Fan

Mornings too cold, but gets too hot by noon? By hooking up a temperature sensor to the Omega, we can
use the data it provides to modulate the speed of a fan - cooling us down only when we need it!

This kind of setup is used in many places: the cooling fans in your laptop or desktop computer operate
in the same way. Other applications include home-brewing beer or wine kegs and anywhere temperature
control is required.

https://community.onion.io/category/1/projects

4.0 Temperature-Based Smart Fan 237

Overview

Skill Level: Intermediate ~ Advanced
Time Required: 40 Minutes

There’s a lot of implementation details in this project that will change depend on the exact hardware you
have access to. We used a D18B20 1Wire temperature sensor, for example. For the fan, we recommend
a computer case fan, since those are quite easy to come by and works decently well.

We also cooked up a DC motor with a 3D printed rotor setup just like in the Omega2 Maker Kit since
we had all of those handy.

To control the fan, we’ll be using a python script and the Onion PWM Expansion Python Module to
control the fan speed. We also use a library to operate the 1Wire sensor, but your methods may vary
depending on your exact sensor.

All the code we used is written for a case fan with a transistor switching it. It can be found in Onion’s
iot-smart-fan repository on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
e Onion Servo (PWM) Expansion
o Breadboard (optional, but it helps a lot)
e Computer case fan
— Note that we used a fan that was roughly double the size!
e DI18B20 1-Wire Temperature Sensor
— The Omega accepts 12C, 1Wire, and SPI, among other protocols, so other digital sensors will
work as well.
e 12V DC power supply
— Must be capable of supplying at least 0.5A
e Resistors
— 1x 5.1k

https://docs.onion.io/omega2-maker-kit/maker-kit-servo-h-bridge.html
https://docs.onion.io/omega2-docs/pwm-expansion-python-module.html
https://github.com/OnionIoT/iot-smart-fan
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/servo-pwm-expansion/
https://www.amazon.com/gp/product/B004RXKWDQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004RXKWDQ&linkCode=as2&tag=onion0e-20&linkId=3f7f512f8017eeed52768810a0deca09
https://www.amazon.com/gp/product/B00XDZBGKW/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00XDZBGKW&linkId=332191a81246fc23201e27ff1a5e74a6
https://www.amazon.com/gp/product/B004G53D54/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004G53D54&linkCode=as2&tag=onion0e-20&linkId=79fff5f353a360474ce314466504b359
https://www.amazon.com/gp/product/B019X3XVWS/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B019X3XVWS&linkCode=as2&tag=onion0e-20&linkId=7e3fcbbeb2bf474a33f4d68a7413fc21
https://www.amazon.com/gp/product/B016NXK6QK/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B016NXK6QK&linkId=62595ffef640175ce3a3b44fabd712e4

238 Chapter 4. loT Projects

— 1x 1kQ
e 1x 47 F Capacitor
e NPN Transistor rated for 12V at 0.5A
e Jumpers

— 2x M-F

— 4x M-M

Step-by-Step

Follow these instructions to set this project up on your very own Omega!

1. Prepare

First let’s get the Omega ready to go. if you haven’t already, complete the First Time Setup Guide to
connect your Omega to WiFi and update to the latest firmware.

Plug in the PWM Expansion to the Dock and grab all the components:

https://www.amazon.com/gp/product/B00M2EJ8Y6/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00M2EJ8Y6&linkId=fe5eb0fd249c34ff8a43690ffd9f850f
https://www.amazon.com/gp/product/B008IFYEP6/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B008IFYEP6&linkId=4f618679e87ed718958f7372f0fbfb6a
https://www.amazon.com/gp/product/B01LZF1ZSZ/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01LZF1ZSZ&linkId=0fa23489eefb433f7768a252eb43dbde
https://docs.onion.io/omega2-docs/first-time-setup.html

4.0 Temperature-Based Smart Fan 239

2. Install the Required Software

We need Python and the Onion PWM Expansion Python Module to make this work:

opkg update
opkg install python-light pyPwmExp

Everything else will be included in the GitHub repo.

3. Connect the Fan

Computer case fans are voltage driven, but we can cheat by using PWM with a transistor to switch the
supply voltage.

If you have jumpers handy, we recommend using them as a bridge between the header of the fan and the
PWM expansion.

First, we’ll have to set up the transistor. For our lab setup, we used an S9014 NPN transistor with a 2-wire
PC case fan. If you use a different model, make sure to note which pin is the base/collector/emitter.

If you use a PNP transistor, your fan will automatically turn on unless you set the PWM
output to 100%. This is because PNP transistors turn ‘on’ when the base draws current,
when the PWM channel is at 0% duty, it draws a tiny bit of current - enough to turn on the
transistor!

Most commonly, case fans have three pins/wires - one of which is a tachometer output. If you're using
one of these, make sure there’s no power being supplied to the output pin, this will cause damage to the
fan.

The output pin sends the current speed of the fan, it can be used in your code to check if the
fan is working as a bonus!

We connected the power supply to the PWM expansion for cleaner wiring.
1. Connect the transistor to the breadboard across 3 empty rows.

2. Connect the (=) (usually black) wire of the fan to the transistor’s collector pin (right pin when
looking at the flat front).

3. Connect the (+) (usually red) wire of the fan to an empty row a few spaces away.

4. Connect the Vcc pin on the PWM Expansion’s SO channel to the (+) pin of the fan using a M-F
jumper wire.

https://docs.onion.io/omega2-docs/pwm-expansion-python-module.html

240 Chapter 4. loT Projects

5. Connect one end of the 1k resistor to the transistor’s base pin (middle).

6. Connect the other end of the resistor to the SIGNAL pin on the PWM Expansion’s SO channel using
a M-F jumper.

7. Connect the transistor’s emitter pin (left pin when looking at the flat front) to one of the Expansion
Dock’s GND pins using a M-M jumper.

4.0 Temperature-Based Smart Fan 241

8. Connect the capacitor across the fan’s (+) and (-) wires where they are connected to the bread-
board.

o If you have a polarized capacitor with the (=) or (+) side clearly marked, make sure to match
the terminals with the fan’s ((=) to (=), (+) to (+))!

242 Chapter 4. loT Projects

This circuit will now switch the Fan’s voltage based on the PWM signal from channel 0!

The capacitor acts as a simple low-pass filter to supply the fan with a smooth analog voltage.

4. Wire up the Temperature Sensor

This part is written assuming you’re working with the D18B20, if your sensor is different, you may have
to find a guide elsewhere on wiring it properly.

The D18B20 has a pinout that looks like this:

4.0 Temperature-Based Smart Fan 243

DS18B20

GND DQ Vmo

T

2 3

BOTTOM VIEW

TO-92
(DS18B20)

NOTE: the second graphic is a bottom view, where the pins are pointing towards you (we may have
fried a sensor by misreading this one).

Now we can connect the sensor to the Expansion Headers.

1. First, connect the temperature sensor to the breadboard across another three empty rows.

o Leave some space from the transistor so you can easily interact with it!
Connect the GND pin of the sensor to a GND pin on the Expansion Header using a M-M jumper wire.
Next, connect the middle pin (DQ) to GPIO1 on the Expansion Header using a M-M jumper.
Connect the VDD pin to a 3.3V pin on the Expansion Header using a M-M jumper.
Finally, connect the 5.1k} resistor across the sensor’s VDD and DQ pins (right and middle respec-
tively).

Cr N

Chapter 4. loT Projects

244

Your setup is now complete!

4.0 Temperature-Based Smart Fan 245

5. Get the Project Code
The code for this project is all done and can be found in Onion’s iot-smart-fan repo on GitHub. Use
git to download the code to your Omega: navigate to the /root directory, and clone the GitHub repo:

cd /root
git clone https://github.com/OnionIoT/iot-smart-fan.git

5.5. Using a Different Sensor

There’s a good bit of setup for the temperature sensor - initialization, communicating, and parsing.

If you have a different sensor than the the one we’re using, you’ll have to modify the project code. The
code that sets up the D18B20 1-wire sensor can be found in the lines between #~~~ SENSOR SETUP BEGIN
and #~~~ SENSOR SETUP END.

Additionally, you’d probably need to change the function used to get the sensor data:

temp = sensor.readValue()

One important thing to note is that the values assigned to the temp variable must be integer or float.

https://github.com/OnionIoT/iot-smart-fan
https://docs.onion.io/omega2-docs/installing-and-using-git.html

246 Chapter 4. loT Projects

6. Calibrate and Customize

You can edit the config. json to change the possible speed range of the fan and restrict the temperature
range to which the fan reacts:

{
"tempMax" : "40",
"tempMin" : "18",
"dutyMin" : "60",
"dutyMax" : "100",
"frequency" : "1000",
"fanType" : '"case"

b

The dutyMin and dutyMax parameters control the minimum and maximum duty cycle of the signal
being sent to the fan, thereby controlling the fan speed. The tempMin and tempMax parameters specify
the temperature range in which to enable the fan. The fan speed has a linear relationship with the
temperature when it is between the min and max temperature.

If you find that the fan does not spin when current is applied, you may have to increase the dutyMin to
overcome the static friction in the fan’s shaft bearing. Once it gets up to speed, you can then lower the
duty and the fan will still be able to spin.

Using A Different Fan

If you would rather use the H-Bridge and DC Motor setup, you’ll have to make some changes to the code.
Namely, you’ll have to swap out the OmegaPwm class with the hBridgeMotor class from omegaMotors.py.
Check the pin-outs that we’ve put in by default in iotSmartFan.py to make sure you’re correctly con-
necting the H-Bridge to the Servo Expansion.

For a detailed guide on how to set this up, check out the wiring instructions in the Maker Kit DC Motor
experiment.

To change up the code, open up iotSmartFan.py and change this line:
fan = OmegaPwm(FAN_PWM_CHANNEL)

To this:
fan = hBridgeMotor (FAN_PWM_CHANNEL, H_BRIDGE_1A_CHANNEL, H_BRIDGE_2A_ CHANNEL)

And this line:
fan.setDutyCycle (duty)

To this:
fan.spinForward (duty)

Code Highlight

Two of the key components in this project are the temperature sensor and the motor drivers, found in
temperatureSensor.py and omegaMotors.py.

https://docs.onion.io/omega2-maker-kit/maker-kit-servo-dimming-led.html
https://docs.onion.io/omega2-maker-kit/maker-kit-servo-dimming-led.html

4.0 loT Lock 247

The output from the 1-Wire temperature sensor contains a lot of unnecessary information such as the
device address, connection acknowledgements, and other fields. The __readOneWire () internal method
of the TemperatureSensor class extracts the temperature value and converts it to degrees Celsius:

def __readOneWire(self):

device typically prints 2 lines, the 2nd line has the temperature sensor at the end

eg. ab 01 4b 46 7f ff Oc 10 5c t=26375
rawValue = self.driver.readDevice()

grab the 2nd line, then read the last entry in the line, then get everything after the

value = rawValue[1].split() [-1].split("=")[1]

convert walue from string to number
value = int(value)

DS18B20 outputs in 1/1000ths of a degree C, so convert to standard units
value /= 1000.0
return value

The method to set the duty cycle for a servo fan, setDutyCycle() uses the Onion pwmExp class to easily
control it:

def setDutyCycle(self, duty):
""rSet duty cycle for pwm channel”"""
ret = pwmExp.setupDriver(self.channel, duty, 0)
if (ret !'= 0):
print 'ERROR: pwm-exp setupDriver not successful!'

return ret

IoT Lock

Keys are so last year. With the Omega and the internet, we can unlock things with our keyboard or
touchscreen!

In this project, we’ll be building an electric lock system with the Omega:

248 Chapter 4. loT Projects

In fact, we use this very setup to control a secondary lock at Onion HQ:
7/ /I

§

Note: in fact, keys are still very useful. We still recommend you to use a normally-open
lock and a key-lock in conjunction, as power failure will result in a fail-safe backup instead of
locking you out.

Disclaimer: This security-related project is just that, a project. This is not intended to be
a fully-featured or robust home security solution. Use your own judgment when applying
this project to securing your belongings, property, etc. By doing this project, you accept
all risk and Onion cannot be held responsible for any damages or misuse.

4.0 loT Lock 249

Overview

Skill Level: Intermediate
Time Required: 1.5 hours

To accomplish this, we’ll use the HT'TP server, uhttpd on the Omega to listen for the unlock signal
through a request and cgi-bin scripts to control the lock. When it’s set up, we’ll be able to to unlock
by accessing a web page through a phone, a laptop, a tablet, a tv, anything!

The web page will allow us to:

e unlock
e lock
o toggle - unlock and then lock again after some time
— If the lock is currently locked. If not, this action does nothing

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
¢ Onion Relay Expansion
e An electric solenoid lock
— We recommend a simple power locking, normally unlocked lock so you don’t get locked out
when there’s no power.
e Appropriate DC power supply for your lock
— We found a 12V 1A DC power supply to be compatible with most locks

Lock Mounting Tools:

e Screws

e Bolts

o Extra wires

e Appropriate tools

This really depends on where and how you’re mounting your lock

Here’s what our list looked like - minus the mounting tools and parts.

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/relay-expansion/
https://www.amazon.com/gp/product/B00V8B3GFG/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00V8B3GFG&linkId=0e7d6832716d72a90b4f3b51fb2e22ea
https://www.amazon.com/gp/product/B019X3XVWS/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B019X3XVWS&linkCode=as2&tag=onion0e-20&linkId=7e3fcbbeb2bf474a33f4d68a7413fc21

250 Chapter 4. loT Projects

Step-by-Step

Our instructions will be based on the recommended lock type. If you have an advanced electric lock with
multiple settings, you can adjust the instructions as you see fit.

1. Prepare

To get started, we need to set up the Omega and our lock.

First we need an Omega2 ready to go. If you haven’t already, complete the First Time Setup Guide to
connect your Omega to WiFi and update to the latest firmware.

Plug in the Relay Expansion, and that’s it for the Omega.

>
il

ve

“
2
?
-
-
“
J
J
4
’
J

2. Test the lock

Next, read up on the operation of the lock of choice. Our code is based of a simple on/off switch system
so it helps to know if it will work with your chosen lock.

It’s a good idea to start with a simple circuit to test the hardware. Using a two-wire lock, we’ll connect
it to our power supply through the Relay Expansion.

To set up the terminals on the Relay Expansion, turn the screw on the terminal counterclock-
wise until the metal clamp inside is sitting a bit less than halfway in the bottom of the housing,
not too much or the screw might pop out. The screw terminal on the barrel jack adapter is a

https://docs.onion.io/omega2-docs/first-time-setup.html

4.0 loT Lock 251

bit different, it will rise and sink depending on the clamp position. When the screw is roughly
flush with the top, it is open. To close it, turn clockwise until the screw sinks to about halfway,
or until it becomes difficult to continue turning.

o First, connect the negative (ground) terminal (usually the black wire) of the lock to the negative
(ground) terminal of the power supply.

e Next, connect the positive terminal of your supply to the IN screw terminal of Channel 0 on the
Relay Expansion

o Finally, connect the positive (power) terminal (usually red) to the OUT screw terminal of
Channel 0 on the Relay Expansion.

Once the lock is wired, connect to the Omega’s command line and then switch on the relay:
relay-exp -i O on
If the lock’s state changes, you're all set to continue! Before proceeding, Yyu can disable the lock with:

relay-exp -i 0 off

4. Plan out the Lock Placement

Before getting to software, you should make sure the lock chosen can be mounted to the door with good
fit. Take some measurements and plan out the wiring and placement of the Omega/supply so we can
quickly follow through once the software is ready to go.

Measure twice, cut once.

5. Mount the lock

Now that the pieces work together, it’s time to mount your lock! Keep all the components powered off,
and take the testing rig apart

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal

252 Chapter 4. loT Projects

4.0 loT Lock 253

At Onion HQ, we’ve extended the wiring of the lock and routed it to an Omega and power
supply right next to the door, but depending on the situation, you may have to do something
completely different.

6. Download the Project Code

The code for this project can be found in Onion’ iot-door-lock repository on GitHub. We’'ll use git to
download the code to your Omega: navigate to the /root directory on the Omega, and clone the GitHub
repo:

opkg update

opkg install git git-http ca-bundle

cd /root

git clone https://github.com/OnionIoT/iot-door-lock.git

If your lock has more modes/controls, feel free to take a look at the code (specially
www/cgi-bin/door.sh) and make changes that control your lock more effectively.

7. Adjust the Code for your Lock

The code assumes two things:

o That the lock in use is a normally closed lock
— ie when there is no current (the Relay Expansion channel is off) the lock will be in the locked
state
e When toggling the lock, it assumes a delay of 24 seconds between unlocking and locking again

To adjust either of the above, you’ll need to edit the www/cgi-bin/door.sh script:

e To change the Relay Expansion channel values for the lock, adjust the LOCKED and UNLOCKED vari-
ables
e To change the delay between unlocking and locking during a toggle, adjust the TOGGLE_TIME variable

8. Serve the Lock Webpage

In order to serve up the webpage that we’ll use to send the lock commands, copy the contents of the www
directory of the project directory to the /www directory on your Omega, and you should be good to go!
cp -r iot-door-lock/www/ /

By virtue of uhttpd, the HT'TP server running on the Omega, all of the files in the /www
directory will be served up as a website.

Using the IoT Lock

Now the truly IoT part, using the IoT Lock!

1. Connect your Omega to your WiFi network, or connect your computer to the Omega’s WiFi network.
2. In a web browser, navigate to omega-ABCD.local/lock.html, where ABCD is the last 4 digits on the
sticker on the Omega.

https://github.com/OnionIoT/iot-door-lock
https://docs.onion.io/omega2-docs/installing-and-using-git.html
https://docs.onion.io/omega2-docs/installing-and-using-git.html

254 Chapter 4. loT Projects

e On some Android and PC devices, the omega-ABCD.local address doesn’t always work.
Follow our guide on finding your Omega’s IP Address and use the IP address instead of
omega-ABCD.local when connecting the web interface. It will be something along the lines of
192.168.1.109/1ock.html

3. Hit any of the buttons to carry out the action indicated

o As a refresher, we can Toggle the lock (unlock momentarily and then lock again), unlock it, or

lock it

https://docs.onion.io/omega2-docs/finding-omega-ip-address.html

4.0 loT Lock 255

256 Chapter 4. loT Projects

Bonus: Automatically Lock & Unlock

To make this truly useful & automated, we can schedule when the IoT lock will unlock and lock using
the cron Linux utility!

Check out the cron example that sets up the lock to turn on and off at 11AM and 6PM respectively but
only on weekdays:

0 11 * * 1,2,3,4,5 sh /www/cgi-bin/door.sh unlock
0 18 * * 1,2,3,4,5 sh /www/cgi-bin/door.sh lock
#

This is included in the project code repo as crontab.txt
Here’s a quick overview of cron job definitions work:

* % *x *x *x command to execute

day of week (0 - 7) (O to 6 are Sunday to Saturday, or use names; 7 is Sunday, the se
month (1 - 12)
day of month (1 - 31)
hour (0 - 23)
min (0 - 59)

H H HF H H HF H H H

The hash (#) denotes a comment that will be ignored

So the first line specifies that the lock will be unlocked at 11am on weekdays, and the second line specifies
that it will be locked at 6pm on weekdays.

To apply this scheduling to your IoT lock, type crontab -e to add a task to the cron daemon, it will
open a file in vi, enter in the command listed up above. Then restart the cron daemon for the changes
to take effect:

/etc/init.d/cron restart
Great! Your IoT lock now runs on a schedule!

Check out the Omega documentation for more info on using cron

Going Further

While this is really useful, next we’ll make the lock react to Tweets from authorized users, so you can lock
and unlock your IoT lock from anywhere, and even give access to your friends!

IoT Lock - Control with a Tweet

Let’s take what we did in Internet Lock - Part 1, and add a program to control it in real time from
Twitter!

https://docs.onion.io/omega2-docs/running-a-command-on-a-schedule.html

4.0 loT Lock - Control with a Tweet 257

Gabe
@gabe onioniot
M 970

Alright, let's do this! #lock

RETWEET

4]
=N
12:19 PM - 28 Apr 2017

£33 1

® Tweet your reply
A

Gabe @gabe_onioniot - 1m
. Replying to @gabe_onioniot
and #unlock!

Gabe @gabe_onioniot - 18s

Replying to @gabe_onioniot

Now #toggle!

Disclaimer: This security-related project is just that: a project. This is not intended to be
a fully-featured nor robust home security solution. Use your own judgment when applying
this project to securing your belongings, property, etc. By doing this project, you accept
all risk and Onion cannot be held responsible for any damages or misuse.

Overview

Skill Level: Intermediate
Time Required: 30 minutes

The code will be written in Python and we’ll be making use of Twitter’s Streaming APIs to grab Tweet
data. Specifically, the code uses the Tweepy library to manage authentication and keeping a persistent

https://dev.twitter.com/streaming/overview
http://www.tweepy.org/

258

HTTP connection to Twitter.

Same as before, the code used to handle this setup can be found in the iot-door-lock repository on GitHub.

Lock Access Rules

First, this app will be listening for new tweets from the users you specify in the configuration file. Please
note that all public tweets will be received over the Internet by your Omega when the main script is

running.

By default, the Omega is configured to change the state of the lock when it detects a tweet from an
authorized user with a corresponding hashtag. The list of allowed users and hashtags for each command

are configured in a separate JSON file, config. json.

The default hashtags that correspond to lock actions are:

Hashtag Lock Action

#lock Program the Relay to set the lock to locked

#unlock Program the Relay to set the lock to unlocked

#toggle Unlock, wait 5 seconds, lock again (Does nothing if lock is already unlocked)

Some examples of authorization are shown below (all of the command hashtags follow the same rules):

Event Lock Response
@authorizedUserl Unlock
posts a status

containing

#unlock

QauthorizedUser2 Toggle (briefly
replies to a status unlock, and then
and includes lock again)
#toggle

@authorizedUser?2 Lock
retweets a status

from

Q@authorizedUserl

that contains

#lock

O@unauthorizedUserl None
posts or retweets

a status

containing

#toggle

@unauthorizedUser?2 None
posts retweets a

status from

Q@authorizedUserl

containing

#unlock

Chapter 4. loT Projects

https://github.com/OnionIoT/iot-door-lock

4.0 loT Lock - Control with a Tweet 259

Note: The lock will respond to the first command hashtag it finds in each status, so posting “#lock
#unlock” will activate the lock.

Ingredients

Unlike Part 1, the dependencies for the Python Twitter software requires more space than is available
on the Omega2 standard model by default. You will either have to boot from external storage or use an
Omega2+ instead.

We will be using the same components and setup as in the first part:

Here’s what our list looked like - minus the mounting tools and parts.

Onion Omega2 or Omega2+
Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
Onion Relay Expansion
An electric solenoid lock
— We recommend a simple power locking, normally unlocked lock so you don’t get locked out
when there’s no power.
Appropriate DC power supply for your lock
— We found a 12V 1A DC power supply to be compatible with most locks

Step-by-Step

Follow these instructions to control the smart lock from Twitter on your very own Omegal

1. Prepare

You'll have to have your Omega2 ready to go, complete the First Time Setup Guide to connect your
Omega to WiFi and update to the latest firmware.

2. Complete Part 1 of the Project

This project builds on the first part of the IoT Lock project. If you haven’t already completed the first
part, go back and do it now!

https://docs.onion.io/omega2-docs/boot-from-external-storage.html
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/relay-expansion/
https://www.amazon.com/gp/product/B00V8B3GFG/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00V8B3GFG&linkId=0e7d6832716d72a90b4f3b51fb2e22ea
https://www.amazon.com/gp/product/B019X3XVWS/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B019X3XVWS&linkCode=as2&tag=onion0e-20&linkId=7e3fcbbeb2bf474a33f4d68a7413fc21
https://docs.onion.io/omega2-docs/first-time-setup.html

260 Chapter 4. loT Projects

3. Install Dependencies

Connect to the Omega’s command line and run the following commands:

opkg update

opkg install python-pip

pip install --upgrade setuptools
pip install tweepy

4. Create a Twitter Application

We’ll need to create a Twitter Application in order to be able to use Twitter’s APIs to grab Tweets.
Specifically, our code needs the following information:

e an API Key

e an API Secret

e an Access Token

e an Access Token Secret

in order to authenticate with Twitter before we can use the APIs.

1. If you don’t have a Twitter account, create one now.
2. Head over to https://apps.twitter.com and sign in with your Twitter handle

® ® ® Twitter Application Manager: X Lazar
& C @& Secure https://apps.twitter.com QA0 Y :
W Application Management E -

E
Twitter Apps
You don't currently have any Twitter Apps.
Create New App
About Terms Privacy Cookies © 2017 Twitter, Inc.

1. Fill in the form details for your application. Twitter app names must be unique globally, so try
calling it omega-ABCD-door-lock, where ABCD are the 4 digits in your Omega’s hostname.

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal
https://twitter.com/signup
https://apps.twitter.com

261

4.0 loT Lock - Control with a Tweet
Lazar

(XX} /"y Create an application | Twitte x\D

&« C | & Secure https://apps.twitter.com/app/new
W Application Management

Create an application

Application Details

Name *
Omega Twitter Reader
Your application name. This Is used to attribute the source of a tweet and In user-facing authorization screens. 32 characters max.

Description *
Reading the latest Tweet from a specified user
Your application description, which will be shown In user-facing authorization screens. Between 10 and 200 characters max.

https://onion.lo
source attribution for twoets croated by your appiication and will be shown in user-facing authorization screens.
7/ you don't have a URL yet, just put a placehoider here but remember to change it later)

Website *
Your application’s publicly accessible home page, where users can go 1o download, make use of, or find out more information about your application. This fully-quakiied URL is used in the

Callback URL

1. Read and agree to the Twitter Developer Agreement and hit Create your Twitter application.

" QaAQoYyY

® ® ® 'y create an application | Twitte: x |\
C | & Secure https:// twitter. [new
Your application description, which will be shown in user-facing authorization screans. Between 10 and 200 characters max.

<~

https://onion.io
source aftribution for tweets created by your appiication and will be shown in user-facing authorization SCroens.
i you don't have a URL yet, just put a placeholder here but remember to change it later)

shouid explicitly spectfy their cauth_calibeck URL on the request tokan step, regardiess of the value

Website *
Your application’s publicly acoessible home page, where users can go to download, make use of, or find out maove information about your appication. This fully-qualiied URL is used in the

Callback URL
a OAuth 1.0

Whers shouid we return after
given here. To restrict your appiication from using caiibacks, jeave this fleid biank.

Developer Agreement
£ Yes, | have read and agree to the Twitter Developer Agreement.

Create your Twitter application

Note that your Twitter account must have an associated mobile phone number before Twitter

will allow you to create an application!

262 Chapter 4. loT Projects

1. Your Application is now created!

©® ® ® |y Omega Twiter Reader | Twitt: X = =
<« C | & Secure https://apps.twitter.com/app/13628440 " QaoYyY |
W Application Management .

Your application has been created. Please take a moment to review and adjust your application’s settings.

Omega Twitter Reader Test Ot

Details Settings Keys and Access Tokens Permissions

Reading the latest Tweet from a specified user
https://onion.io

Organization

Information about the organization or company assoclated with your application. This information is optional.
Organization None

Organization website None

Application Settings

Your appiication’s C mer Key and Secret are used (o authenticate req T r Pla

Access level Read and write (modify app permissions)

1. Head over to the Keys and Access Tokens tab to grab the info we need

©® ® ® /5 Omega Twitter Reader | Twitte x |\ Lazar
&« C | & Secure https://apps.twitter.com/app/13628440/keys * QaQO0Y
W Application Management N

Omega Twitter Reader Teet Ot

Detaiis Settings Keys and Access Tokens Permissions

Application Settings

Keep Ji 3 secret. This key should never be human-readable in your application
fonsumer Key (API Key) - e R w o
CONSUMET SECTAT (AP SECTOU) 1Y) S — S S —
Access Level Read and write (modify app permissions)
Owner = o
Owmner ID —
Application Actions
Regenerate Consumer Key and Secret Change App Permissions

1. Scroll down to the section called “Your Access Token”, and click “Create my access token”.

4.0 loT Lock - Control with a Tweet

263

Your Access Token

Token Actions

Create my access token

We will be using the 2 pairs of keys and secrets to authorize our app to connect to Twitter, so copy and

paste or write them down somewhere for later.

5. Edit the Configuration File

Open the config. json file and edit or paste in the following information:

config.json Value

consumerKegonsumer Key in

the Twitter
application menu

consumerSedretitter Consumer

Secret

accessTokenTwitter Access

Token

accessTokenSeditter Access

Token Secret

allowedUserd\ comma-separated

hashtags

list /array of screen
names who will have
access to your lock.
eg.:
["@john_smith",
"Q@jane_doe"]
Customize the
hashtag you want
for each action. The
defaults are #lock,
#unlock, and
#toggle.

If you trust them, you can add friends or family to the list of allowed users.

6. Running the Project

Navigate to the repo directory and run:

264 Chapter 4. loT Projects

python tweetLock.py
The script will then run forever, listening for new tweets until you exit by pressing Ctrl-C.

Now try tweeting from some of the allowed accounts and include one of the hashtags you configured. You
should see your lock reacting very quickly!

Gabe
P @gabe_onioniot

Alright, let's do this! #lock

RETWEET 4
1 -

12:19 PM - 28 Apr 2017

£3 1

® Tweet your reply
- y ply

Gabe @gabe_onioniot - 1m
. Replying to @gabe_onioniot
and #unlock!

Gabe @gabe_onioniot - 18s
Replying to @gabe_onioniot

Now #toggle!

Tell your friends to try it out too!

7. Rate Limiting

The Twitter Streaming API that pushes new tweets to the Omega limits the amount of new sessions
you can initiate within a certain period of time. If you restart the program too often in a short window

4.0 loT Lock - Control with a Tweet 265

of time, you will receive a 420 error. You will see a warning on the command line, and the program
will automatically disconnect and retry according to Twitter’s recommended backoff policy; see the Rate
Limiting section on Twitter’s documentation.

The rate limiting criteria are not made public, so we recommend playing it safe and relaxing for about
5-10 minutes each time you need to restart the script.

Note: Too many connection attempts may result in your IP being banned from connecting to Twitter!

8. Running the Program on Boot

We can automate this project to run when the Omega is turned on, and we can also make it run in the
background so you can use the Omega for other things while it’s running! To do this, we’ll place a script
in /etc/init.d.

In the repo folder, make the etc/init.d/tweet-lock file executable, copy it to /etc/init.d, then enable
it to run on boot:

cd etc/init.d

chmod +x tweet-lock

cp tweet-lock /etc/init.d
/etc/init.d/tweet-lock enable

Wait for 5-10 minutes, reboot the Omega, and you will automatically be able to tweet at your lock again!

The /etc/init.d/tweet-lock script registers the IoT Lock Python script as a service with
procd, the process management daemon of the system. procd then ensures that the process
gets started at boot and continues to run until the service is disabled.

Code Highlight

This project uses the Twitter Streaming API, made easily accessible by the Tweepy library. Streaming,
as opposed to using the REST API, lets Twitter push data such as new statuses or direct messages
immediately after they happen in real-time. This eliminates the overhead of repeatedly polling Twitter
for new information; it’ll get sent to us as it happens.

When opening a stream, you must specify some way to filter the incoming tweets. This is because
thousands of tweets are sent every second on average; that’s a lot! The two most common ways of doing
this are by:

o following particular users
o tracking keywords

Here we use the first method by only receiving tweets from our list of authorized users.

The streaming functions have been further abstracted by the StreamListener and TwitterApp
classes in twitterHelper.py. Any class that is used to receive and process tweets must extend the
tweepy.StreamListener class by redefining its callback methods, such as on_status() and on_error().
These functions are called when an event such as a new status occurs. They do nothing by default, so
you need to tell them what to do!

For full details on the Tweepy library, visit the documentation page.

https://dev.twitter.com/streaming/overview/connecting
http://docs.tweepy.org/en/latest/

5 Audio Projects

Like a regular computer, the Omega2 IoT computer is equipped to handle sound output and input. The
fact that the Omega runs a Linux Operating System, makes the endeavor easier since there is a wide
variety of already available software for this very purpose.

Concepts

A highlight of some of the concepts that will be covered in these projects:

o Interfacing with a USB audio adapter
e Configuring Linux programs and utilities
o Bluetooth pairing with a device

Projects

Audio projects for the Omega:

268 Chapter 5. Audio Projects

1. AirPlay Speaker
e Stream music to your Omega over WiFi using Apple’s AirPlay protocol
2. Bluetooth Speaker
e Use your Omega as a Bluetooth speaker and stream music from your devices

AirPlay Speaker

Since the Omega can be set up to receive AirPlay streams, we can turn our Omega into a WiFi speaker
that can be controlled with a laptop or phone using a USB audio device.

Overview

Skill Level: Intermediate
Time Required: 15 Minutes
There are three main pieces of the puzzle here:

To get AirPlay working, we will set up shairport-sync on the Omega. The audio stack on the Omega
will work out of the box with USB devices, so we simply need to plug in any USB audio device. Finally,
to actually stream music, a device with AirPlay controller capabilities must be set up to stream to the
Omega.

Reference configuration files can be found on Onion’s audio-airplay-receiver repo on GitHub.

https://github.com/OnionIoT/audio-airplay-receiver

5.0 AirPlay Speaker 269

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock with a USB host connector: Expansion Dock, Power Dock, Mini Dock, Arduino
Dock 2
— We found the Power Dock especially useful since you can take it on the go!
e USB Audio Adapter
— We used an adapter but USB speakers will likely work too
e Headphones or a small speaker

Step-by-Step

Follow these steps and we’ll have audio streaming to the Omega in no time!

1. Prepare the Ingredients

For this project, we’ll need an Omega2 ready to go. If needed, complete the First Time Setup Guide to
connect your Omega to WiFi and update to the latest firmware.

2. Replace Avahi
The version of Avahi that comes installed on the Omega does not have dbus-daemon support, this needs
to be fixed!

Connect to the Omega’s command line to uninstall the pre-existing avahi package. Then we can get the
avahi-dbus-daemon package to replace it.

First uninstall avahi:
opkg remove avahi-nodbus-daemon --force-depends

Once that’s finished,

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/mini-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/power-dock/
https://www.amazon.com/gp/product/B00M3UWE3Q/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00M3UWE3Q&linkId=5440ae6f2fa012199b70bb15fb23bf88
https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal

270 Chapter 5. Audio Projects

opkg update
opkg install avahi-dbus-daemon --force-overwrite

3. Install Shairport Sync

The shairport-sync package runs an Airplay Receiver server to listen and process AirPlay streams.
Fortunately, it is available in the Onion Repositories, so we can install with opkg:

opkg install shairport-sync

4. Configure Shairport Sync

Shairport Sync requires some setup to work properly. To configure it, we’ll be editing /etc/config/shairport-sync.
Open it up and you should see something like this:

Use your own config file
config shairport-sync 'shairport_sync_file'
option disabled '1'
option respawn '1'
option conf_custom '1'
option conf_file '/etc/shairport-sync.conf'

Use OpenWrt UCI config

config shairport-sync 'shairport_sync'
option disabled '1'
option respawn '1'

The first block isn’t useful to us. We want to edit options under the # Use OpenWrt UCI config line.
Specifically, these following lines:

option disabled '1'

option name 'Shairport-Sync-%v-%h'

option password ''

option mdns_backend '' # avahi/external-avahi/dns-sd/external-dns-sd/tinysvcmdns
The Steps:

o First let’s set disabled to '0' to enable the UCI configuration.

e Optionally, pick out a new name to display in your AirPlay devices menus.

e Optionally, add a password to ensure only trusted users can access your Airplay receiver - Not
Recommended

e Finally, make sure the mdns_backend is set to 'tinysvcmdns'

e The rest of the options can be kept as their default values.

If you need a reference for the configuration files, we’ve put them into the audio-airplay-receiver repo
on GitHub.

Restart the Omega for the changes to take effect, and we’ll plug in some speakers!

https://github.com/OnionIoT/audio-airplay-receiver

5.0 AirPlay Speaker 271

5. Set up your Speakers

In our setup, we used a USB-based Audio Adapter. It has a built in Digital-Analog Converter (DAC)
that receives digital audio data from the Omega through the USB port and converts it into an analog
audio signal for speakers or headphones.

But any USB speaker setup should work out of the box thanks to Linux’s audio stack. Plug it into the
dock, and we’ll be good to go!

MAC 40A36BCOETSS
e

6. Prepare your controller

AirPlay works out of the box for iOS devices, so if you own one there’s no set up needed.

If you wish to use an Android device, we found AllStream and DoubleTwist to have stable AirPlay
integration.

7. Fire up Shairport Sync

Now that everything’s ready to go, enter shairport-sync -d to start up the shairport-sync server in the
background.

Listening to Tunes

Now take a look at your AirPlay device, and you should see the Omega pop up as a receiver!

272 Chapter 5. Audio Projects

On an iPhone:

5.0 AirPlay Speaker 273

Chapter 5. Audio Projects

|nmmmmmim|munmmaumam

A

Smoke & Retribution (feat. Vir
Flume —- Skin

aaq |l »»

l‘l O-OI_I-.!I--"IIIII‘ o 2 = s ‘|)):I

'\;;E .i‘] I‘E: e !-E.
S Omega-E755

5.0 AirPlay Speaker 275

On an Andriod phone using the AllConnect App:

Chapter 5. Audio Projects
O Vd= 13:54

— AllConnect

]
s

=

OnionChrome
cast0

Omega-E755

LGE Nexus 5X

5.0 Bluetooth Speaker 277

Play some tunes and enjoy your AirPlay-powered WiFi audio streaming brought to you by your Omega.

Acknowledgements

A big thank you to Mike Brady, who keeps the shairport-sync project alive, making this project possible!

Bluetooth Speaker

The Omega can communicate with other devices using the Bluetooth Low Energy wireless protocol. In
this project, we're going to turn it into a Bluetooth speaker that you can play music and control it from
your phone or tablet!

Overview

Skill Level: Intermediate
Time Required: 15 minutes

We'll first install the necessary Bluetooth and audio drivers. Then we’ll learn how to pair Bluetooth
devices with the Omega. Then we’ll connect a speaker and play our favourite music!

https://github.com/mikebrady/shairport-sync

278 Chapter 5. Audio Projects

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock with a USB host connector: Expansion Dock, Power Dock, Mini Dock, Arduino
Dock 2
— We found the Power Dock especially useful since you can take it on the go!
e Onion Bluetooth Expansion
e USB Audio Adapter
— We used an a adapter but USB speakers will likely work too
e USB hub with at least 2 ports
e Standard headphones or speakers with a 3.5mm audio jack

Step-by-Step

Here’s how to turn your Omega into a Bluetooth speaker!

1. Prepare the Ingredients

For this project, we’ll need an Omega2 ready to go. If needed, complete the First Time Setup Guide to
connect your Omega to WiFi and update to the latest firmware.

2. Setup the Hardware

Connect the Omega to the Dock.

Plug in the USB hub to the large USB host port.

Plug in the Bluetooth Expansion and USB Audio Expansion into the USB hub.

Do not connect your speaker just yet, as there will be loud popping and crackling when the USB
Audio Expansion initializes!

WD =

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/mini-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/power-dock/
https://www.amazon.com/gp/product/B00M3UWE3Q/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00M3UWE3Q&linkId=5440ae6f2fa012199b70bb15fb23bf88
https://www.amazon.com/gp/product/B00PHPWLPA/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00PHPWLPA&linkId=9c1b6b8a1ebfe32c6319e123150bee29
https://docs.onion.io/omega2-docs/first-time-setup.html

5.0 Bluetooth Speaker 279

o - —

‘8
- O
|2
H
a:
3

After assembling all the components, turn on the Omega.

3. Install Software

Connect to the Omega’s command line and install the necessary packages by running the commands
below:

opkg update
opkg install bluez-1ibs bluez-utils pulseaudio-daemon pulseaudio-tools alsa-1lib alsa-utils

e The bluez packages are for controlling the Bluetooth radio.
e The pulseaudio and alsa packages are audio drivers for Linux.

4. Setting Up the pulseaudio daemon

Run the following commands to initialize the daemon:

mkdir /run

udevd --daemon

chmod 0777 /dev/snd/*

mkdir -p /var/lib/pulse

pulseaudio --system --disallow-exit --no-cpu-limit &

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal

280 Chapter 5. Audio Projects

After Rebooting

If you reboot the Omega, the daemon may still be running. Check using:

ps | grep pulse

If you see something like:

1124 pulse 10956 S < /usr/bin/pulseaudio --system --disallow-exit --no-cp
Then it’s running. You only need to run:

udevd --daemon
chmod 0777 /dev/snd/*

before moving to the next step again.

5. Pairing the Omega to Your Bluetooth Device

Check that your Bluetooth Expansion is properly detected by the Omega by running:
hciconfig -a
You should see some lines with information about your device.

root@mega-F12D:/# hciconfig -a

hci@: Type: BR/EDR Bus: USB
BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO MTU:
DOWN
RX bytes:574 acl:0 sco:0 events:30 errors:@

TX bytes:368 acl:@ sco:0 commands:30 errors:0
Features: Oxff Oxff Ox8f Oxfe Oxdb Oxff Ox5b 0x87
Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
Link policy: RSWITCH HOLD SNIFF PARK

Link mode: SLAVE ACCEPT

Run the following commands to turn on your Bluetooth Expansion:

hciconfig hciO up
hciconfig hciO sspmode enable
hciconfig hciO piscan

Enable Bluetooth on the device you wish to connect to the Omega. Then on the Omega, enter the
bluetoothctl command to be taken into a new command prompt. Then run:

agent on
discoverable on
pairable on
scan on

You should see success messages, and a list of Bluetooth devices.

5.0 Bluetooth Speaker 281

root@mega-F12D:/# hciconfig hci@ up
root@mega-F12D: /# hciconfig hci@ sspmode enable
root@mega-F12D: /# hciconfig hci@ piscan
root@mega-F12D: /# bluetoothctl
[NEW] Controller 00:1A:7D:DA:71:13 OnionBLE [default]
[bluetooth]# agent on
Agent reclstered
[bluetooth]# discoverable on

Chandlnc dlscoverable on succeeded

[bluetooth]# pairable on
Changlng palrable on succeeded

[bluetooth]# scan on
Discovery started

[CHG] Controller 00:1A:7D:DA:71:13 Discovering: yes
[NEW] Device..54+68:89:38:05+A0-54=-60-09-38-05-A9
[NE¥.] Device 24 DF:6A:4C:27:42 Nexus 6P

+nnnT

v_‘_r",'ﬂ LOOT! _‘y .

If you do not see these messages try removing the Bluetooth Expansion, rebooting your Omega, and
trying again.

Take note of the device address you wish to pair, or copy it down in a text editor on your computer
somewhere. In this example, the device’s address is the string of numbers, letters, and colons in the red

bubble above.
Then run:
pair YOURDEVICEADDRESS

It will then prompt you for a PIN to secure this connection. You can enter 0, 0000, 1234, or anything
you like; make sure to remember it!

[(bluetooth]# pair 24:DF:6A:4C:27:42
Attemptlnc to pair with 24:DF:6A:4C:27:42
[CHG] Device 24:DF:6A:4C:27:42 Connected: yes

Request PIN code
Enter PIN code: 0@

You should then get a prompt on your device asking you to connect to OmegaBLE and enter a PIN. Enter
the PIN you just provided on the command line to finish connecting.

282 Chapter 5. Audio Projects

Pair with OnionBLE?

Usually 0000 or 1234

PIN contains letters or symbols

You may also need to type this PIN on the
other device.

Allow OnionBLE to access your contacts
and call history

CANCEL

Complete the prompt on your device, then on the Omega run:
trust YOURDEVICEADDRESS

Your device has been paired with the Omega, meaning it can connect at any time. However, they are
still not connected yet.

Now on your device, tap on the connection again and it should connect.

5.0 Bluetooth Speaker 283

Bluetooth

0]

Paired devices

n OnionBLE Q

Connected

s MPOW o
e Nexus4 o

You can now quit the bluetoothctl program with the command:

quit

Check to make sure your device is still connected by running this command:
hcitool con

Your device should be listed. If you see nothing, try initiating the connection again from the remote
device. If that doesn’t work, go back to the previous step.

root@mega-F12D:/# hcitool con
Connections:

> ACL 24:DF:6A:4C:27:42 handle 71 state 1 1m MASTER AUTH ENCRYPT
root@mega-F12D:/# |}

284 Chapter 5. Audio Projects

6. Set Up Audio Streaming From the Device

We will use a command called pactl to set up audio streaming from the Bluetooth connection to the
USB Audio Expansion. First run:

pactl list sources

And look for the Source with bluez_source in the Name field. Copy that entire label down for later.

Source #2
State: SUSPENDED
Name: bluez_source.24_DF_6A_4C_27_42
Descriptioir—Nexus..6P
Driver: module-bluez5-device.c
Sample Specification: sl16le 2ch 44100Hz
Channel Map: front-left,front-right
Owner Module: 13

Mute: no

Volume: front-left: 65536 / 100% / 0.00 dB, front-ri
balance 0.00

Base Volume: 65536 / 100% / ©.00 dB

Monitor of Sink: n/a

Latency: @ usec, configured @ usec

Flags: HARDWARE DECIBEL_VOLUME LATENCY

Properties:
bluetooth.protocol = "a2dp_source”
device.description = "Nexus 6P"
device.string = "24:DF:6A:4C:27:42"
device.api = "bluez”
device.class = "sound"
device.bus = "bluetooth”
device.form_factor = "phone”

Substitute the source name into the following command:
pactl load-module module-loopback source=SOURCENAME sink=alsa_output.default rate=44100 adjust_ti

The Omega is now ready to stream Bluetooth audio!

7. Using the Bluetooth Audio Streamer

Before plugging in your speaker, make sure the volume is set as low as possible. Then start playing music
or audio on your device. Gradually turn up the volume on the speaker until you can hear it. And you’re
done!

5.0 Bluetooth Speaker 285

Enjoy your Omega-powered Bluetooth speaker!

6 Wireless Projects

The Omega has pretty extensive networking capabilities, both wireless and wired when used with an
Ethernet Expansion. On the wireless side, the Omega can join existing WiFi networks as well as create
and host its own WiFi network access point. In fact, it can even do both simultaneously. This opens the
door to some novel scenarios especially since network connectivity can be forwarded between the Omega’s
network and the existing network to which it is connected. When used with the Ethernet Expansion, the
Omega can join wired networks or share connectivity to the wireless network to which it is connected.
And finally, since the Omega runs Linux, there are many, many useful tools available which can be used

in creative ways, as you’ll see in the upcoming projects.

Concepts

A highlight of some of the concepts that will be covered in these projects:

https://onion.io/store/ethernet-expansion/

288 Chapter 6. Wireless Projects

« Using the GPS Expansion to get precise location data

o Using the ubus utility

¢ Modifying existing software and compiling it on the device

o Booting the Omega’s OS from an SD Card (external storage)
e Sharing files on the local wireless network

e Network configuration for operation as a router

o Network configuration for operation as a WiFi range extender
e Network configuration for operation as a WiFi ethernet bridge

Projects

Projects that turn your Omega into a wireless networking tool:

1. Mobile WiFi Network Scanner
e Collect and display the GPS location, signal strength, and more of WiFi networks in your
surrounding area. Take your scanner on the go!
2. OctoPrint 3D Printing Server
e Run the OctoPrint 3D Printing server on your Omega and add wireless connectivity to your
3D printer
3. Mobile Network File Server
e Share files from a USB device on a WiFi network. Can take this on the road and provide access
to data on the go!
4. Omega as a WiFi Router
e Setup your Omega to act just like a WiFi router
5. Omega as a WiFi Range Extender
e Is your WiFi network spotty if you get too far from your router? Setup your Omega to act as
a range extender for your WiFi network
6. Omega as an WiFi Ethernet Bridge
e Use your Omega to connect a computer

Mobile WiFi Network Scanner

The Omega can scan nearby WiFi networks and report information such as their SSID, encryption type,
and signal strength. In this project, we’ll be using the Omega to scan local WiFi networks, record the GPS
coordinates where they’re found, display the networks with the strongest signal on the OLED Expansion,
and save the rest of the data to a spreadsheet file.

6.0 Mobile WiFi Network Scanner 289

Overview

Skill Level: Intermediate
Time Required: 10 minutes
The WiFi scanner will:

e Scan for any WiFi networks in range using a ubus call

e Retrieve location data form the GPS Expansion, again using the ubus

e Sort the scanned networks by signal strength and display the six networks with the strongest signal
on the OLED Expansion

It will then save the following data for each network into a comma separated value (CSV) file that can
be imported into a spreadsheet program:

e Date & time scanned

e Latitude and longitude
« SSID

« BSSID

e Encryption type

e Signal strength

Using the Power Dock, you will be able to use your scanner out in the world without needing a USB
power supply.

290 Chapter 6. Wireless Projects

Ingredients

e Onion Omega2 or Omega2+
e Onion Power Dock
— The Expansion Dock and Arduino Dock 2 will work as well, they just won’t be mobile
e Onion OLED Expansion
e Onion GPS Expansion
o External GPS Antenna with a u.Fl connector (optional, but gets better reception indoors)
e A 3.7V LiPo battery
— We found 1200 mAh to be good for several hours of use

Step-by-Step

Here’s how to turn your Omega into a WiFi scanner!

1. Prepare

You’ll need to have an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega
to WiFi and update to the latest firmware.

https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/power-dock/
https://onion.io/store/expansion-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/oled-expansion/
https://onion.io/store/gps-expansion/
https://www.amazon.com/gp/product/B00LXRQY9A/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B00LXRQY9A&linkId=66164544d399bf466485e8881a8f2df8
https://www.amazon.com/gp/product/B005UWD0EG/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B005UWD0EG&linkId=1ad0d1bd7b949a15414af21e5f595090
https://www.amazon.com/gp/product/B01MYY9J78/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01MYY9J78&linkId=c74126e601f388e237102887a744e778
https://docs.onion.io/omega2-docs/first-time-setup.html

6.0 Mobile WiFi Network Scanner 291

2. Setup the Hardware

Connect your Omega to the Power Dock, then plug in the OLED Expansion into the Expansion Header.
Then plug in the GPS Expansion into the USB host port as shown below.

The GPS Expansion’s antenna is connected via a Hirose U.FL connector. If you have your own antenna
with the appropriate connector that you would like to use, you can gently unplug the included antenna
(the large square piece with a wire) and replace it with your own.

292 Chapter 6. Wireless Projects

3. Install Packages

Connect to the Omega’s command line and install Python as well as some of the packages we need:

opkg update
opkg install python-light pyOledExp ogps git git-http ca-bundle

The pyOledExp package gives us control of the OLED Expansion, while the ogps package will provide a
ubus service that lets us easily get data from the GPS Expansion. The git, git-http, and ca-bundle
packages will allows us to download the project code form GitHub.

After installing ogps, check that the ubus gps service is listed by running ubus list:

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-ssh

6.0 Mobile WiFi Network Scanner 293

192.168.1.242 - PuTTY — O X

m

o000
m m m M

=1
=1
=1
=1
s

W

If you don’t see gps listed, you’ll need to restart your rpcd service in order to refresh the list:
/etc/init.d/rpcd restart
If this doesn’t work, try reinstalling the ogps package by running the following commands:

opkg remove ogps
opkg update
opkg install ogps

4. Download and Install the Project Software

The code for this project is all done and can be found in Onion’s wifi-hotspot-scanner repo on GitHub.
Use git to download the code to your Omega: navigate to the /root directory, and clone the GitHub
repo:

cd /root
git clone https://github.com/OnionloT/wifi-hotspot-scanner.git

5. Running the Project on Boot

Next we’ll setup the Omega to automatically run the scanner when it turns on. Edit the /etc/rc.local
file and add the following line above exit O:

python /root/wifi-hotspot-scanner/main.py &

https://github.com/OnionIoT/wifi-hotspot-scanner
https://docs.onion.io/omega2-docs/installing-and-using-git.html

294 Chapter 6. Wireless Projects

This way, when you flip the power switch, the Omega will run the code in the background after it completes
the initialization process.

6. Using the WiFi Scanner

Here’s the fun part! Press the reset button and the Omega will run the program.

If the GPS Expansion is able to lock onto a satellite signal, you’ll see the time, the GPS coordinates, and
the 6 WiFi networks with the strongest signal available nearby.

bovevevvei

azZ140089Ev0r OYW

QOO0 P909vWO00WOVVY
HOPVOVOVOORVWVWOE

R vV
D

The Omega will then save data about all of the discovered networks to a file called wifiData.csv in the
project directory. You can then import this into a spreadsheet or navigation program for mapping later!

6.0 Mobile WiFi Network Scanner 295

Unable to Lock Signal

If the GPS Expansion cannot lock onto a satellite, you’ll see an error message on the OLED. The program
will try again in a few seconds.

Saved Data

Assuming the project code was downloaded to the /root directory, the collected wifi data will be saved
to: /root/wifi-hotspot-scanner/wifiData.csv. It is a Comma Separated Value (CSV) file and can
be opened with any spreadsheet program. It stores data about the surrounding networks for every single
scan:

296

Chapter 6. Wireless Projects

root@0mega-F12D:~/wifi-hotspot-scanner# cat wifiData.csv
date,latitude,longitude,ssid,bssid,encryption,signalStrength

2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05
2017-05-05

This data can be used in a variety of creative ways: creating a map of your neighbourhood that shows
the strength of the local WiFi networks, creating a database of open networks around the city, the sky is

the limit.

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

34
34
34
34
34
34
34
34
34
34
34
34:
34
34
34
34
34:
34
34
34
34

:12
212,
212,
212,
212,
212,
212,
:12.
:12.
212,
:21.
:21.
:21.
121,
:21.
:21.
:21.
:21.
:21.
:21.
:21.

Code Highlight

The ubus system utility is a key part of the firmware on which the Omega is based. It allows you to call
services and functions on the Omega as if you were sending data to a web API. The basic syntax goes

like this:

.107230,43.
107230,43.
107230,43.
107230,43.
107230,43.
107230,43.
107230,43.
107230,43.
107230,43.
107230,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.
661293,43.

821182,-79.
821182,-79.
821182,-79.
821182,-79.
821182,-79.
821182,-79.
821182,-79.
821182,-79.
821182,-79.
821182,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.
821377,-79.

353691, 1,d0:03:4b:60:79:c6,WPAIPSKWPA2PSK, 0
353691, ,68:b6:fc:a7:53:88,WPA2PSK,Q
353691,R% % c8:91:f9:c1:09:e6,WPAZPSK,0Q
353691, ,b8:62:1f:53:da:47,WPA2PSK, 13

353691, ,a4:6c:2a:a8:56:c1,WPA2PSK,Q
353691,0mega-7CCB,40:a3:6b:c@:7c:cb,WPAZPSK, 50
353691,0nionWiFi,00:25:9¢:13:9b:6b,WPA2PSK, 100
353691,0mega-E755,40:a3:6b:c0:e7:55,WPA2PSK, 47
353691,0nionFriends,02:25:9c:13:9b:6b,WPAZPSK, 100
353691,10.1,90:72:40:21:29:4c,WPA1PSKWPA2PSK, 29
353729, ,d0:03:4b:60:79:c6,WPAIPSKWPAZPSK, @
353729, ,68:b6:fc:a7:53:88,WPA2PSK,Q
353729, @@, c8:91:f9:¢c1:09:e6,WPAZPSK, 0
353729,7 ,b8:62:1f:53:da:47 ,WPA2PSK, 13
353729,0mega-7CCB,40:a3:6b:c@:7c:cb,WPA2PSK, 57
353729,0nionWiFi,09:25:9¢:13:9b:6b,WPA2PSK, 100
353729,1 :,a4:6c:2a:a8:56:c0,WPA2PSK, 0
353729,0mega-E755,40:a3:6b:c0:e7:55,WPA2PSK, 44
353729,0nionFriends,02:25:9¢:13:9b:6b,WPAZPSK, 100
353729, 1,90:72:40:21:29:4c,WPA1PSKWPA2PSK, 29
353729, ,a4:6c:2a:a8:56:c1,WPA2PSK, 0

ubus call (service) (function) '{(JSON parameters)}'

The WiFi and GPS scanning functions are available as ubus functions so that they can be called by any

program.

You can see how they work in the ubusHelper.py module:

basics of running a command
returns a dict as ubus functions return json objects
def runCommand (command) :
shellHelper.runCommand (command)

output, err

responseDict
return responseDict

often used commands
add more if you need

def call(args):

command = ["ubus", "call"]
command . extend (args)
return runCommand (command)

json.loads (output)

6.0 OctoPrint 3D Printing Server 297

and the helpers.py module:

scan wift networks in range
returns a list of wifti dictionaries
def scanWifi():
device = json.dumps({"device": "ra0"})
args = ["onion", "wifi-scan", device]
return ubus.call(args) ["results"]
read the GPS exzpansion
returns a dictionary with gps info
def readGps():
args =["gps", "info"]
response = ubus.call(args)
check <f the GPS ts locked
if "signal" in response and response["signal"] == False:
return False

else return the data
return response

In essence, the scanWifi() function above runs the following command:
ubus call onion wifi-scan '{"device":"raO"}'

And the readGps () function runs this command:

ubus call gps info

Try running these two commands on your Omega’s command line by hand and take note of the output.

OctoPrint 3D Printing Server

This project allows you to use the Omega to wirelessly control your 3D printer.

Instead of having to connect a computer directly to our 3D Printer, we can have the Omega run Octoprint,
a 3D printing server that will control the printer.

298 Chapter 6. Wireless Projects

Octoprint serves up a web interface that we can access from any device in our Local Area Network that
allows you to control and monitor every aspect of your 3D printer and your printing jobs right from within
your browser.

6.0 OctoPrint 3D Printing Server 299

® ® £ OctoPrint X Zheng
“« C | ©® omega-printerbot.local:5000 o f"l &
€ OctoPrint # Settings & “onion” ~
i Connection Temperature Control GCode Viewer Terminal
Sedal Floct 300 B Actual 1 Terget Il Bed Actual [l Bed Target
AUTO :
Baudrate 0
AUTO ;
200 o — . -
Save connection settings \
Auto-connect on server startup 150
Connect
100
0 State
Machine State: Error: SerialException: it
'de...
File: Solder_Stand.gcode 0
Filament: 6.43m / 15.46cm* - 8719 min - 8717 min - 8715 min - 8713 min - 8711 min - 8709 min
Estimated Print Time: 01:33:42
Timelapse: - Temperature Bed Temperature
Height: 100.00 mm
Print Time: 3 .
Print Time Left: Current: - Current: -
Printed: - / 1.1MB Target: - Target: -
New Target New Target
ause ancel
Offset Offset
=Files R 5 0 °C Set 0 |°C Set
Name Size Action
AA-Base.gcode 28MB ®|%= |
AA-cover-raft.g... 1.0MB @& |

Overview

Skill Level: Intermediate
Time Required: 30 minutes

To get our printer server up and running, we’ll have to use some packages from the LEDE repository.
Additionally, we’re going to build a custom version of OctoPrint to fix some compatibility issues.

Ingredients

e Onion Omega2+
e Any Onion Dock with a USB host connector: Expansion Dock, Power Dock, Mini Dock, Arduino
Dock 2
— We liked the Mini Dock for this project since it’s so compact
e 3D Printer that is supported by Octoprint
e Micro SD card
e USB cable to connect the Omega and 3D printer

https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/mini-dock/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/arduino-dock-r2/
https://onion.io/store/mini-dock/
https://github.com/foosel/OctoPrint/wiki/Supported-Printers
https://www.amazon.com/gp/product/B004S1PNAO/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004S1PNAO&linkCode=as2&tag=onion0e-20&linkId=092b6fe251a9e57f173957eef531a4dc

300 Chapter 6. Wireless Projects

Step-by-Step

Follow these instructions to turn your 3D printer wireless!

1. Set up the hardware

Here’s a handy connection diagram of the way the pieces are put together:

3D Printer Power EE

Omega2+
3D Printer on E
UART Mini Dock Micro USB

over for power

USB

First, connect the printer to the Omega with a USB cable. Next, connect the 3D printer to power. Finally,
power on the Omega and we’ll be good to go.

2. Prepare the Omega

If you need, complete the First Time Setup Guide to connect your Omega to WiFi and update to the
latest firmware.

3. Expand Omega storage with SD card
Octoprint is a rather large program and will not fit on the on-board storage of the Omega2 or Omega2+.
To remedy this, we will setup the Omega so that it boots the operating system from external storage.

The below procedure is a condensed implementation of our Booting from External Storage
guide. We recommend taking a look at the full guide before proceeding.

First, plug a micro SD card into the Omega2+, it will show up as /dev/mmcblk0 and /dev/mmcblkOpl

To make it useable, we’ll have to format the SD card to EXT4. Warning: This will delete all data
on the card!

Install disk utilities:

opkg update
opkg install fdisk e2fsprogs block-mount

https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/boot-from-external-storage.html
https://docs.onion.io/omega2-docs/boot-from-external-storage.html

6.0 OctoPrint 3D Printing Server 301

Now unmount and format the SD card:

umount /dev/mmcblkOpl
mkfs.ext4 /dev/mmcblkOpl

Mount the freshly formatted SD card in a more legible location:

umount /dev/mmcblkOpl
mkdir /mnt/SD
mount /dev/mmcblkOpl /mnt/SD

Copy current /overlay directory:

tar -C /overlay -cvf - . | tar -C /mnt/SD/ -xf -
umount /mnt/SD

Now we’ll set up the /overlay directory to automount on startup. First, we’ll copy our current setup to
the filesystem record:

block detect > /etc/config/fstab

Next, we edit /etc/config/fstab to tell the Omega to mount the SD card as the /overlay partition, ie
run the Omega’s operating system from the SD card’s storageL

o Change option target '/mnt/mmcblkOpl' to option target '/overlay'
o Change option enabled 'O' to option enabled '1'

Reboot for our changes to take effect.

After the Omega starts again, you can verify that you are indeed running the operating system from the
SD card by running df -h.

You should see something like this:

Filesystem Size Used Available Use% Mounted on

/dev/mmcblkOp1 7201.9M 32.5M 6784.3M 0% /overlay

4. Build Octoprint

Octoprint requires some packages that are not in the Onion package repository, so we’ll pull them from

the LEDE repo instead.

To do so, we need to edit /etc/opkg/distfeeds.conf and uncomment this line:

src/gz reboot_packages http://downloads.lede-project.org/snapshots/packages/mipsel_24kc/packages
Once done, we can install the packages we need:

opkg update
opkg install python python-pip unzip
pip install --upgrade setuptools

Now we need to expand /tmp folder on the Omega:

302 Chapter 6. Wireless Projects

mkdir /overlay/tmp

rm -rf /overlay/tmp/*

cp -a /tmp/* /overlay/tmp/
umount /tmp

[$7 -ne 0 1 && {

umount -1 /tmp

}

mount /overlay/tmp/ /tmp

Once we have the packages and enough space, we can download and build Octoprint:

cd /root

wget https://github.com/foosel/0OctoPrint/archive/1.0.0.zip
unzip 1.0.0.zip

cd OctoPrint-1.0.0

pip install -r requirements.txt

Note: Currently we’ve only able to successfully get Octoprint 1.0.0 to compile and work

Now we need to edit a few files to resolve some compatibility issues.

Unicode characters cause problems with Python on the Omega, so we have to replace one of the author’s
names to be only ASCII characters (Sorry Gina Héuflge)

s/HauBge/H\./g
sed -i 's/HauBge/H\./g' /root/OctoPrint-1.0.0/src/octoprint/util/comm.py
sed -i 's/H&auBge/H\./g' /root/OctoPrint-1.0.0/src/octoprint/util/virtual.py

The Omega only has a single user, and that is the root user. Octoprint does not let you run as root, so
we have to suppress that

sed -i 's/exit("You should not run OctoPrint as root!")/pass/g' /root/OctoPrint-1.0.0/src/octopri

That’s it! Now we can test drive our Octoprint Installation:

./run

Open a browser, connect to port 5000 on your Omega. We renamed our Omega to omega-printerbot
so the address we use is http://omega-printerbot.local:5000:

6.0 OctoPrint 3D Printing Server

303

® 0 ® ¢ ocoprint X Zheng
“« C | ©® omega-printerbot.local:5000 o !"‘I &
€ OctoPrint # Settings & “onion" ~
. Connection Temperature Control GCode Viewer Terminal
Serdal Port 300 I Actual 8 Target Il Bed Actual [l Bed Target
AUTO :
Baudrate 0
AUTO ;
200 — —
Save connection settings \
Auto-connect on server startup 150
Connect

100

0 State

Machine State: Error: SerialException: it

'de...

File: Solder_Stand.gcode 0

Filament: 6.43m / 15.46cm* - 8719 min - 8717 min - 8715 min - 8713 min - 8711 min - 8709 min

Estimated Print Time: 01:33:42

Timelapse: - Temperature Bed Temperature

Height: 100.00 mm

Print Time: 3 %

Print Time Left: Current: - Cunent: >

Printed: - / 1.1MB Target: - Target: -
New Target New Target

ause ancel

Offset Offset

=Files R 5 0 °C | Set 0 °C

Name Size Action

AA-Base.gcode 28MB @|%= |

AA-cover-raft.g... 1.0MB |

5. Auto start Octoprint at startup

Move OctoPrint to a proper location:

mv /root/OctoPrint-1.0.0 /usr/share/OctoPrint
Make a symlink to the start up binary:

1n -s /usr/share/OctoPrint/run /usr/bin/octoprint
Edit /etc/rc.local add the following before exit 0:

octoprint &

And bam, we're ready to control our 3D printer wirelessly from our local network!

304 Chapter 6. Wireless Projects

® ©® ¢ ocorrint x \\R Zheng
&« C ® omega-printerbot.local:5000 % | 0g W
€ OctoPrint # Settings & “onion" ~
i Connection Temperature Control GCode Viewer Terminal
i Fort 0 I Actual 1 Target [l Bed Actual Il Bed Target
AUTO :
Baudrate 0
AUTO B
200
Save connection settings \
Auto-connect on server startup 150
Connect
100
0 State
Machine State: Error: SerialException: s
'de...
File: Solder_Stand.gcode 0
Filament: 6.43m / 15.46cm* - 8719 min - 8717 min - 8715 min - 8713 min - 8711 min - 8709 min
Estimated Print Time: 01:33:42
Timelapse: - Temperature Bed Temperature
Height: 100.00 mm
Print Time: s y
Print Time Left: Current: - Current: -
Printed: - / 1.1MB Target: - Target: -
New Target New Target
°C | Set |~ °C Set ~
m Il Pause M Cancel
Offset Offset
=Files R 5 0 °C | Set 0 |°C Set
Name Size Action
AA-Base.gcode 28MB @|%= |
AA-cover-raft.g... 1.0MB

Mobile Network File Server

The Omega’s firmware has packages available for a file sharing server program called Samba. By plugging
in a USB storage device, you can turn your Omega into a mobile network file server!

‘\

6.0 Mobile Network File Server 305

Overview

Skill Level: Intermediate
Time Required: 20 minutes

This project will walk through how to set up an external storage device, configure a Samba server on the
Omega, and how to access it from other operating systems.

Sample Configuration files

The Onion samba-server-config GitHub repository contains reference configuration files in case you
need to troubleshoot your setup.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock to power the Omega

— We like the Mini Dock if you plan to keep it one place.

— Use the Power Dock if you plan to make this a truly portable network storage device.
o A USB storage device or Micro SD card (for Omega2+)

Step-by-Step

Let’s turn your Omega into a portable network attached storage, or NAS for short!

1. Setup your Omega
You’ll need an Omega2 ready to go, complete the First Time Setup Guide to connect your Omega to
WiFi and update to the latest firmware.

If you need to hook up the Omega to a new network, connect to the command line and use the wifisetup
utility:

root@0mega-0104:/# wifisetup
Onion Omega Wifi Setup

Select from the following:
1) Scan for Wifi networks
2) Type network info

q) Exit

Selection:

Follow the instructions to scan for WiFi networks and connect to your router’s network.

https://github.com/OnionIoT/samba-server-config
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/product-category/docks/
https://onion.io/store/mini-dock/
https://onion.io/store/power-dock/
https://www.amazon.com/gp/product/B01HVHXB32/ref=as_li_tl?ie=UTF8&tag=onion0e-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B01HVHXB32&linkId=e5e563d8f5fd8616b85c1eb555a7f2de
https://www.amazon.com/gp/product/B004S1PNAO/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B004S1PNAO&linkCode=as2&tag=onion0e-20&linkId=092b6fe251a9e57f173957eef531a4dc
https://docs.onion.io/omega2-docs/first-time-setup.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html

306 Chapter 6. Wireless Projects

2. Set up your Storage Device

You can share any directory on your Omega through Samba. For this project, we’ll assume you have a
USB storage device or microSD. Both of these devices will be automatically mounted at /tmp/mounts.

Usually, a USB device is mounted under /tmp/mounts/USB-A1, but you can make sure by calling:
ls /tmp/mounts
The directories listed should all correspond with auto-mounted devices.

Copy down the full path to your storage device (/tmp/mounts/USB-A1 worked for us) - we’ll need this
to configure Samba.

For a detailed walk-through on how to use storage devices, take a look at the guide to USB Storage and
MicroSD Cards on the Onion Docs.

3. Install the Required Software

WEe’ll need Samba for this, naturally. Samba’s name occasionally changes with versioning changes, to
check what it is, we can do:

opkg update
opkg list | grep samba
opkg install samba##-server

At time of writing, Samba is at version 36, so we can install it like so:

opkg install samba36-server

4. Find the Omega’s WiFi card

By default, Samba does not listen to Omega’s WiFi for incoming access requests. We’ll need to let Samba
know which interface it should listen on to get requests for its data.

The Omega communicates with other networks through the apcliO interface. Note that down for later!

If you’d like to see for yourself, use ifconfig to list all the interfaces available. Here’s an
example of that the output will look like:

root@0Omega-E755: ~# ifconfig
apcliO Link encap:Ethernet HWaddr AA:AA:AA:AA:AA:AA
inet addr:192.168.1.109 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::40a3:6bff:fe00:e755/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:13787 errors:0 dropped:3 overruns:0 frame:0
TX packets:5953 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:3197266 (3.0 MiB) TX bytes:602257 (588.1 KiB)

br-wlan Link encap:Ethernet HWaddr AA:AA:AA:AA:AA:AA
inet addr:192.168.3.1 Bcast:192.168.3.255 Mask:255.255.255.0
inet6 addr: fe80::42a3:6bff:fec0:e757/64 Scope:Link
inet6 addr: £d1d:48c4:7633::1/60 Scope:Global

https://docs.onion.io/omega2-docs/usb-storage.html
https://docs.onion.io/omega2-docs/using-a-microsd-card.html

6.0 Mobile Network File Server 307

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:456 errors:0 dropped:0 overruns:0 frame:0
TX packets:746 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:58973 (57.5 KiB) TX bytes:88296 (86.2 KiB)

We see apcliO is the interface with the most RX bytes and TX bytes, meaning it’s being
doing the most communication. Additionally, it has an IP Address (see the inet addr) that
corresponds to a LAN - starting with 192.168.1.

4. Configure Samba

For Samba to start sharing our folders, it needs to know where, how, and who. It gets all these details
from configuration files. Specifically, /etc/config/samba and /etc/samba/smb.conf .template.

First let’s open up /etc/config/samba with our editor. It should look a little like this:

config samba

option 'name' 'Lede’
option 'workgroup' 'WORKGROUP'
option 'description' 'Lede’
option 'homes' 1!

These fields are all customizable options that change how the Samba server behaves.

We recommend changing name option to your Omega’s Omega-ABCD name (where ABCD are the bolded
numbers on your Omega’s cover) for easy recognition. The other options should be left as-is, and the
description option can be changed to something helpful.

Next, we’ll add in a line like this:
option 'interface' 'apcliO'

This tells Samba it should listen on the apcliO interface, this sets up Samba to accept connections. We
just need to let it know the location of our shared folder.

To declare a new shared folder, we’ll append a block to the end like this:

config 'usbshare'

option 'name' 'usb'

option 'path' ' /tmp/mounts/USB-A1"
option 'users' 'root'

option 'read_only' 'no’

option 'guest_ok' 'no'

The main configurations that are needed are the name, path, and users:

e The name will be the name that appears devices accessing it.

o The path is the directory (or file) you want to share.

e Setting read_only to no will mean that anyone accessing the shared folder can change its contents
e While having guest_ok set to no means access is only granted after authentication.

The /etc/config/samba file is a Universal Configuration Interface (UCI) file, LEDE uses it
to simplify configuration of system services.

308 Chapter 6. Wireless Projects

Next, we’ll have to fiddle with /etc/samba/smb.conf.template. Opening it with our editor will greet
us with this:

[globall
...blah
...blah
enable core files = no
guest ok = yes
invalid users = root
load printers = no
...blah

We'll have to change one thing here since we’ll be accessing the shared folder/s as root:
invalid users = #

And now Samba is ready to go!

More Options

Samba has a ton of configuration features that allow you to micromanage who gets access to what. For
a bit more detail on how Samba works, LEDE has an excellent guide on configuring Samba. For a lot
more detail on how Samba works, Using Samba is available to explain the nitty-gritty details.

5. Users and passwords

To allow access, we’ll have to set up passwords any user we specified - since we only used root, we can
call smbpasswd like so:

smbpasswd -a root

This utility will create a root Samba account associated with the root account of the operating system.
You’ll be prompted to enter a new password for use with Samba.

6. Applying our changes

Samba needs to be restarted for our configuration to apply. We can do this with:
/etc/init.d/samba restart

Now we’re ready to check out our file share!

7. Access your shared folder

Of course once the server is running, we’ll have to actually access it somehow.

Windows

On Windows, a Samba share can be found by opening a file explorer and going to ‘Network’ The name
we specified in /etc/config/samba should appear as a network location, and the folder we shared listed
inside it. You’ll be prompted for login details, input root and the password you selected in step 5, and
voila!

https://lede-project.org/docs/user-guide/samba_configuration
https://www.samba.org/samba/docs/using_samba/toc.html

6.0 Omega WiFi Router 309

For a more detailed tutorial on connected to a Samba-shared network drive, take a look at this tutorial.

Linux

Modern Linux distros have Samba clients well integrated in the file explorer, and the process is very
similar to windows. Open up file explorer, navigate to the Network root, and find your Omega to access.

Some desktop environments have it grouped under a ‘Samba Shares’ folder or the like inside
the Network root.

For a more detailed tutorial on connected to a Samba-shared network drive, take a look at [this tuto-
rial] ((https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise Linux/3/html/System__
Administration Guide/sl-samba-connect-share.html)

Mac OS X

On OS X, connecting to a Samba share can be done using Finder. Open a Finder window and hit
Command+K, in the window that pops up, for Server Address type in smb://omega-ABCD.local where
ABCD is your Omega’s unique identifier. Connect as a registered user and select the volume to which you
would like to connect.

After that, it will will just be like any other directory on your computer.

For a more detailed tutorial on connected to a Samba-shared network drive, take a look at this tutorial

Omega WiFi Router

A router is a device that connects multiple devices on a wired or wireless network. They are very widely
used with modems to allow multiple devices to connect to the Internet through the single connection
provided by the modem.

We’re going to use the Omega as a wireless router that:

e Received Internet connectivity through a wired Ethernet connection
o Broadcasts a WiFi network Access Point (AP)
e Shares network access from the Ethernet network to the WiFi AP network

https://help.lafayette.edu/samba/win7nondomain
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/3/html/System_Administration_Guide/s1-samba-connect-share.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/3/html/System_Administration_Guide/s1-samba-connect-share.html
http://osxdaily.com/2010/09/20/map-a-network-drive-on-a-mac/

310 Chapter 6. Wireless Projects

The Ethernet Expansion is required to give your Omega access to an Ethernet port. By using the Ethernet
Expansion, we can turn our Omega into a low-cost yet effective router.

6.0 Omega WiFi Router

311

U Il 100%@3 WedMay3 318PM Q =

root Turn Wi-Fi Off 17

35

v flattop
A Nice Name
ARAZ2009
BELL217
BELL552
BELL614
BELL710
Brendal
Brendal-5G
Central Perk
Central Perk-5G
DAVID CURRAH
DAVID CURRAH-5G
Escher
FibeTVM91351SA18TF
FiReFLy2
Honeypot
La

NETGEAR10-5G

‘OmegaRouter

pantaloons

rogers1001
rogers1001-5G

Rogers27119

DAamnare2Q17R

| o) o} o} o)) o} sj o) s} s} o} 5 o} 5} 5]} 5} 5j B} B

)) 9) .,)) .,)) .,)) .0 .

PED DD &

Overview

Skill Level: Intermediate

Time Required: 10 minutes

What we are going to do is to first enable the Omega’s Ethernet connection, stop the Omega from
connecting to other, existing WiFi networks, then enable routing network traffic from the Omega’s AP

to the Internet through the Ethernet connection.

312 Chapter 6. Wireless Projects

Sample Configuration files

The Onion omega-as-router Github repository contains reference configuration files in case you need to
troubleshoot your setup.

Please note that there are some placeholders such as RouterPassword and somewifissid. Make sure to
copy only the relevant parts!

Default Configuration Files

If you ever want to revert your configuration to the original, we have a complete set of default configuration
files from a factory-fresh Omega2 in the uci-default-configs repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
— We prefer the Expansion Dock for this project since it enables access to the command line
through serial even when there’s no network connectivity
e Onion Ethernet Expansion

Step-by-Step

Here’s how to turn your Omega into a wireless router!

1. Prepare

First let’s get the Omega ready to go. if you haven’t already, complete the First Time Setup Guide to
connect your Omega to WiFi and update to the latest firmware.

2. Setup the Hardware

Connect your Ethernet Expansion to the Expansion dock, and plug in the Ethernet cable, as shown below:

https://github.com/OnionIoT/omega-as-router
https://github.com/OnionIoT/uci-default-configs
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-serial
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-serial
https://onion.io/store/ethernet-expansion/
https://docs.onion.io/omega2-docs/first-time-setup.html

6.0 Omega WiFi Router 313

i
S
2
S

Connect the other end of the cable to your modem, or other device that is providing internet connectivity.

3. Setup the Omega

The next step is to stop the Omega from connecting to other, existing WiFi networks, as it will be using
the Ethernet Expansion to access the Internet instead.

We’re going to be restarting the WiFi on the Omega a few times, breaking any SSH connections
in the process. To avoid this, you can try using a serial connection with your Omega. For
more information, please refer to this guide on connecting to your Omega.

On the Omega’s command line, enter the following commands:

uci set wireless.Qwifi-iface[0].ApCliEnable=0
uci commit wireless

Restart the WiFi network to apply your saved changes:

wifi

314 Chapter 6. Wireless Projects

4. Changing the WiFi AP Configuration
Set the SSID and password of the router’s WiFi network with the following commands, substituting
OmegaRouter and RouterPassword with values of your choice:

uci set wireless.Qwifi-iface[0].ssid=OmegaRouter
uci set wireless.@wifi-iface[0].key=RouterPassword
uci commit

Changing the Encryption Type

If you wish to keep the default encryption type, WPA2 (psk2), which we strongly recommend, you can
skip this step.

However, if you do wish to change the encryption type, find the type you want in the UCI wireless
encryption list, then substitute it into YourEncryptionType and run:

uci set wireless.@wifi-iface[0].encryption=YourEncryptionType
uci commit

Please keep in mind that 1st generation WPA is not secure and that WEP keys have be be a certain
length in order to work properly.

Restarting the WiFi
Run the following command to restart the WiFi network and apply your settings:

wifi

5. Enable Ethernet Connectivity

Enable the Ethernet interface, ethO, by running:

uci set network.wan.ifname='ethO'
uci set network.wan.hostname='OnionOmega'
uci commit

Then restart the network service:
/etc/init.d/network restart

This will allow the Omega to connect to the Internet via the Ethernet port.

6. Enabling Packet Routing in the Firewall

Now we need to enable sharing of network access between the ethernet network and the WiFi AP. Open
the /etc/config/firewall file using vi and find the block that looks like the following:

config zone
option name 'wan'
option output 'ACCEPT'
option forward 'REJECT'
option masq '1'

https://wiki.openwrt.org/doc/uci/wireless/encryption
https://wiki.openwrt.org/doc/uci/wireless/encryption
http://www.pcworld.com/article/153396/wifi_hacked.html

6.0 Omega WiFi Router 315

option mtu_fix '1'
option network 'wwan'
option input 'ACCEPT'

and do the following:

o Change option forward 'REJECT' to option forward 'ACCEPT'
e Change option network 'wwan' to list network 'wwan'
e Add list network 'wan' after the list network 'wwan' line

The block should now look like this:

config zone
option name 'wan'
option output 'ACCEPT'
option forward 'ACCEPT'
option masq '1'
option mtu_fix '1'
list network 'wwan'
list network 'wan'
option input 'ACCEPT'

Now restart the firewall by running:

/etc/init.d/firewall restart

What we’ve told the firewall to do with the above configuration is to allow traffic passing
between the wwan interface (the WiFi network) and the wan interface (the wired ethernet
network).

7. Using the Omega Router

And we’re ready! To use the Omega Router, you simply need to connect your computer or your smart-
phone/tablet to the WiFi network that you configured in Step 4, and your devices should be able to
access the Internet via the Omega.

316 Chapter 6. Wireless Projects

U Il 100%@3 WedMay3 318PM Q =

85 root Turn Wi-Fi Off 17

v flattop
A Nice Name
ARAZ2009

BELL217

BELL552

BELL614

BELL710

Brendal

Brendal-5G

Central Perk

Central Perk-5G

DAVID CURRAH

DAVID CURRAH-5G

Escher

FibeTVM91351SA18TF

FiReFLy2

Honeypot

La

NET

‘OmegaRou

pantaloons

rogers1001
rogers1001-5G

Rogers27119

DAamnare2Q17R

GEAR10-5G

)| =} o} s} =] o} s} o} s} =} o) 5 o} 5} 5} o} 5} B} B} B

PEPDDD
))) D) ML) -

Omega WiFi Range Extender

Do you have some places in your home where your WiFi network is slow? A WiFi range extender is a
device that can increase the effective range of a router by being placed closer to the end user and acting
as a relay to the router.

The Omega’s powerful WiFi capabilities and incredibly small footprint allow it to be effective as a WiFi
range extender.

6.0 Omega WiFi Range Extender 317

Even though the Omega has only one physical WiFi interface, you can create two virtual interfaces and
have the Omega relay the packets back and forth between the two interfaces. This allows you to set up
the Omega as a WiFi range extender that relays the packets between your computer/smartphone and
your router. This can be very helpful if your router has a short range and the connection has problems
from beyond a certain distance.

Let’s get started!

Overview

Skill Level: Intermediate
Time Required: 10 minutes

This project will turn your Omega into a WiFi Range Extender for your WiFi network.

Sample Configuration Files

The Onion range-extender-config Github repository contains reference configuration files in case you
need to troubleshoot your setup.

https://github.com/OnionIoT/range-extender-config

318 Chapter 6. Wireless Projects

Default Configuration Files

If you ever want to revert your configuration to the original, we have a complete set of default configuration
files from a factory-fresh Omega2 in the uci-default-configs repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock
— We really like the Mini Dock for this project because of its small footprint

Step-by-Step

Here’s how to get your Omega set up to forward packets to and from your router!

1. Prepare

First let’s get the Omega ready to go. if you haven’t already, complete the First Time Setup Guide to
setup your Omega and update to the latest firmware.

https://github.com/OnionIoT/uci-default-configs
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/product-category/docks/
https://onion.io/store/mini-dock/
https://docs.onion.io/omega2-docs/first-time-setup.html

6.0 Omega WiFi Range Extender 319

2. Connect the Omega to the router

Now, you will need to connect the Omega to your router. To do this, connect to the command line|(https://
docs.onion.io/omega2-docs /connecting-to-the-omega-terminal.html), and use the wifisetup command:

root@imega-0104:/# wifisetup
Onion Omega Wifi Setup

Select from the following:
1) Scan for Wifi networks
2) Type network info

q) Exit

Selection:

Follow the instructions to scan for WiFi and connect to your router’s network.

3. Firewall Settings

Next, you will need to configure the Omega to route packets between it’s own WiFi AP and your routers
network. In other words, you're enabling the Omega to route packets from your device to the Omega to
the Router, and back.

To do this, you will be editing the /etc/config/firewall file:
Enter the following command to edit the file:

vi /etc/config/firewall

Find the block that looks something like the following:

config zone
option name 'wan'
option output 'ACCEPT'
option forward 'REJECT'
option masq '1'
option mtu_fix '1'
option network 'wwan'
option input 'ACCEPT'

and make sure that the input, output, and forwarding settings are set to ACCEPT

option input ACCEPT
option output ACCEPT
option forward ACCEPT

Once you have saved and closed the file, run the following command to restart the firewall with the
updated configuration:

/etc/init.d/firewall restart

What we’ve told the firewall to do with the above configuration is to allow traffic passing
between the wwan network interfaces, that is, the WiFi network AP the Omega is hosting and
the WiFi network to which the Omega is connected.

https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html

320 Chapter 6. Wireless Projects

Use Your Omega WiFi Range Extender

At this point, your Omega is connected to router as well as serving its own access point, and the Omega
is setup to relay information back and forth between these two WiFi interfaces. This means that you can
connect your computer/smartphone to the AP of your Omega, and be able to access the data coming
from the router.

To use the Omega as the WiFi range extender, you would typically place the Omega somewhere between
your router and your computer/smartphone. Packets will travel from your router to the Omega, and from
the Omega to your computer/smartphone instead of directly from the router to your device. Effectively,
extending your WiFi network’s range!

Happy Surfing!

Omega WiFi Ethernet Bridge

An Ethernet Bridge is a device that shares its WiFi network access through an Ethernet connection, kind
of like an ethernet-based WiFi dongle. If the WiFi network is connected to the internet, the internet
connection will be shared as well.

The Omega’s flexible networking abilities and the Ethernet Expansion allow us to use the Omega as WiFi
Ethernet Bridge!

6.0 Omega WiFi Ethernet Bridge 321

As an example, this type of setup can be used to bring internet access to a desktop computer that does
not have a network adapter or to a laptop with a broken wireless interface.

Sample Configuration Files

The Onion ethernet-bridge-config Github repository contains reference configuration files in case you
need to troubleshoot your setup.

Default Configuration Files

If you ever want to revert your configuration to the original, we have a complete set of default configuration
files from a factory-fresh Omega2 in the uci-default-configs repo on GitHub.

Overview

Skill Level: Intermediate
Time Required: 10 minutes

What we’re first going to do is set the Omega’s wlan interface to use eth0, the wired ethernet connection.
The only thing that’s left is to connect the Omega and the target computer with an ethernet cable. We
don’t even have to adjust the firewall since the wlan interface is setup to route packets to all connected
interfaces.

Sample Configuration Files

The Onion range-extender-config Github repository contains reference configuration files in case you
need to troubleshoot your setup.

Default Configuration Files

If you ever want to revert your configuration to the original, we have a complete set of default configuration
files from a factory-fresh Omega2 in the uci-default-configs repo on GitHub.

Ingredients

e Onion Omega2 or Omega2+
e Any Onion Dock that supports Expansions: Expansion Dock, Power Dock, Arduino Dock 2
— We prefer the Expansion Dock for this project since it enables access to the command line
through serial even when there’s no network connectivity
e Onion Ethernet Expansion
e An Ethernet cable

Step-by-Step

Here’s how to turn your Omega into an Ethernet WiFi dongle!

https://github.com/OnionIoT/ethernet-bridge-config
https://github.com/OnionIoT/uci-default-configs
https://github.com/OnionIoT/range-extender-config
https://github.com/OnionIoT/uci-default-configs
https://onion.io/store/omega2/
https://onion.io/store/omega2p/
https://onion.io/store/expansion-dock/
https://onion.io/store/power-dock/
https://onion.io/store/arduino-dock-r2/
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-serial
https://docs.onion.io/omega2-docs/connecting-to-the-omega-terminal.html#connecting-to-the-omega-terminal-serial
https://onion.io/store/ethernet-expansion/

322 Chapter 6. Wireless Projects

1. Prepare the Omega

To begin, you’ll need to make sure your Omega is connected to the Internet and has the latest firmware.
Follow this guide if you’d like to learn more on how to set up your Omega.

Once that’s done, plug in the Ethernet Expansion:

2. Enable the Omega’s Ethernet Connection

Now connect your Omega and the target computer with an ethernet cable:

6.0 Omega WiFi Ethernet Bridge

What we need to do next is change the Omega’s networking configuration.
block located in /etc/config/network:

config interface 'wlan'

option
option
option
option
option
option

type 'bridge'

ifname 'ethO0.1'

proto 'static'

ipaddr '192.168.3.1'
netmask '255.255.255.0'
ipbassign '60'

Change option ifname 'ethO.1' to option ifname 'ethO'

Restart the network service by running the following command:

/etc/init.d/network restart

Change the following code

Now the wlan network interface is using eth0, the physical ethernet interface.

3. Configure your Device to use Ethernet

Now that the Omega is configured, we should be able to get on the internet through an Ethernet cable

to the Omega.

324

Chapter 6. Wireless Projects

Make sure that your connection is set to Obtain IP address and DNS address Automatically.

should be set so by default.

Windows

To do this on Windows, follow this guide.

Mac OSX

To do this on Mac OS X, follow this guide.

Enjoy

Now your computer has been given an IP address by the Omega and you can surf away!

o0 < Network Q Search

Location: = Automatic i

Ethernet N

Connected NG Status: Connected
N Ethernet is currently active and has the IP

@ Blaze Bootloader address 192.168.3.125.

Not Configured
&N

Sg%ﬁ?gtum \;\ Configure IPv4: = Using DHCP a

USB-Se...ntroller . &
Not Configured \o

Thunde...thernet
Not Connected N 7

CDC Co...Gadget /=
® LR O

Not Connected

FireWire -
Not Connected =

& Wi-Fi

—_—
—
Off -

@ Bluetooth PAN 9

Not Connected

=

IP Address:
Subnet Mask:
Router:

DNS Server:
Search Domains:

IPv6 Address:

192.168.3.125
255.255.255.0
192.168.3.1

fd1d:48c4:7633::ca2a: 14ff:.fe2d:b0e6

Advanced... ?

It

http://www.computerhope.com/issues/ch001048.htm
https://www.cs.cmu.edu/~help/networking/dhcp_info/dhcp_mac.html

	Onion Omega2 Project Book Vol. 1
	Introduction to the Omega2
	Getting Started
	The Command Line
	File Editing on the Omega
	Intro to Python
	Where Can I Learn More?
	Where to Get More Onion Products
	Reporting Issues

	Starter Projects
	Morse Code on an LED
	LED Traffic Light

	OLED Expansion Projects
	Ambient Temperature Monitor
	QR Code Generator
	News Flash Headlines
	Stock Ticker
	Twitter Feed Display

	IoT Projects
	Weather Station
	Time-Lapse Camera
	Alarms based on an Online Calendar
	Thermal Printer
	Thermal Printer - A Compact Version
	Smart Plant - Measuring Plant Data
	Smart Plant - Visualizing Plant Data
	Smart Plant - Twitter Alerts
	Smart Plant - Automatic Plant Watering
	Smart Plant - A Single Power Supply
	Temperature-Based Smart Fan
	IoT Lock
	IoT Lock - Control with a Tweet

	Audio Projects
	AirPlay Speaker
	Bluetooth Speaker

	Wireless Projects
	Mobile WiFi Network Scanner
	OctoPrint 3D Printing Server
	Mobile Network File Server
	Omega WiFi Router
	Omega WiFi Range Extender
	Omega WiFi Ethernet Bridge

