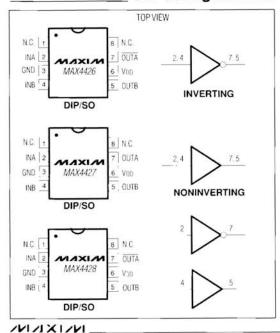


General Description

The MAX4426/4427/4428 are dual monolithic MOSFET drivers designed to translate TTL/CMOS inputs to high voltage/current outputs. The MAX4426 is a dual inverting power MOSFET driver. The MAX4427 is a dual noninverting power MOSFET driver, and the MAX4428 contains one inverting section and one noninverting section. Delay times are nearly independent of Vpp (see *Typical Operating Characteristics*). High-current output drivers rapidly charge and discharge the gate capacitance of even the largest power MOSFETs to within millivolts of the supply rails. This produces the power MOSFETs' minimum on resistance. The MAX4426/4427/4428's high speed minimizes power losses in switching power supplies and DC-DC converters.

Applications

Switching Power Supplies


DC-DC Converters

Motor Controllers

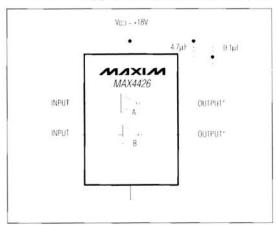
Pin-Diode Drivers

Charge-Pump Voltage Inverters

Pin Configurations

Features

- ♦ Upgrade for TSC4426/4427/4428
- ♦ Lower On Resistance: 4Ω vs. 7Ω
- ♦ Shorter Delay Times: t_{D1} 10ns vs. 30ns t_{D2} 25ns vs. 50ns
- ♦ 1.5A Peak Output Current
- Fast Rise and Fall Times: Typically 20ns with 1000pF Load
- ♦ Wide Operating Range: 4.5V to 18V
- Low Power Consumption: 1.8mA with Logic 1 Input 200µA with Logic 0 Input
- ♦ TTL/CMOS Compatible
- ◆ Latchup Protected Withstand >500mA Reverse Current
- **♦** ESD Protected


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4426CPA	0 C to +70 C	8 Plastic DIP
MAX4426CSA	0 C to +70 C	8 SO
MAX4426C/D	0 C to +70 C	Dice*
MAX4426EPA	-40 C to +85 C	8 Plastic DIP
MAX4426ESA	-40 C to +85 C	8 SO
MAX4426EJA	-40 C to +85 C	8 CERDIP
MAX4426MJA	-55 C to +125 C	8 CERDIP**

Ordering Information continued on last page.

* Dice are tested at TA = +25 °C.

Typical Operating Circuit

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

^{**} Contact factory for availability and processing to MIL-STD-883.

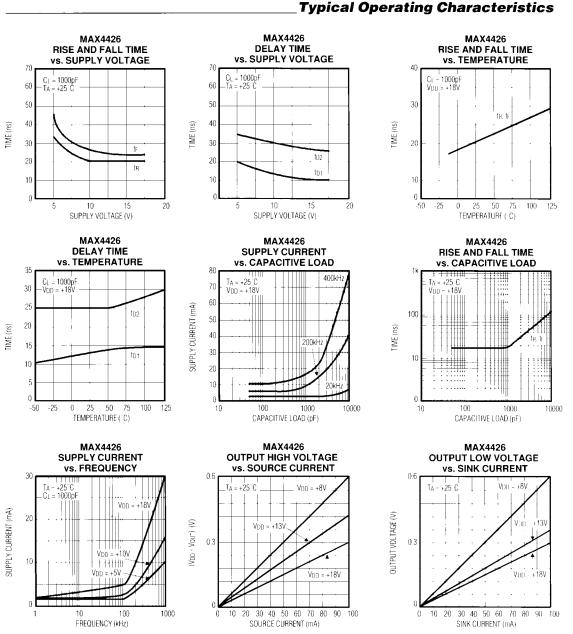
ABSOLUTE MAXIMUM RATINGS

+20V
50ns
0.3V
7mW
1mW
WmO

Operating Temperature Ranges:	
MAX442_C	0 C to +70 C
MAX442_E	-40°C to +85°C
MAX442_MJA	-55 C to +125 C
Storage Temperature Range	
Maximum Chip Temperature	
Lead Temperature (soldering, 10 sec)	+300 C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS


(VDD = +4.5V to +18V, TA = TMIN to TMAX, unless otherwise specified.)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
Logic 1 Input Voltage	VIH				2.4			V
Logic 0 Input Voltage	VIL						0.8	٧
Input Current	liN	VIN = 0V to 18V	1		-1		1	μА
Output High Voltage	Voн	No load			VDD-25)		mV
Output Low Voltage	VOL	No load		ro <u></u>			25	mV
			VIN = 0.8V for inverting stages,	T _A = +25 C		4	10	1
Output Penintage	Rout	VDD = 18V,	VIN = 2.4V for noninverting stages	TA = TMIN to TMAX		5	12	Ω
Output Resistance	HOUI	ILOAD = 10mA	V _{IN} = 2.4V for inverting stages.	T _A = +25 C		4	10	
			V _{IN} = 0.8V for noninverting stages	TA = TMIN to TMAX		5	12	
Peak Output Current	IPK	V _{DD} = 18V		an z		1.5		А
		VIN = +3V	TA = +25°C	= 10		1.8	4.5	
Power-Supply	ISUPP	both inputs	TA = TMIN to TMAX			2.5	8.0	mA
Current	13011	VIN = 0V	TA = +25°C			0.2	0.4	1000
		both inputs	TA = TMIN to TMAX			0.3	0.6	
Rise Time (Note 1)	ta	TA = +25°C				20	30	l ns
hise time (Note 1)	LPS:	TA = TMIN to Th	MAX			25	40	110
Fall Time (Note 1)	te	T _A = +25 °C				20	30	ns
rail filite (Note 1)	u-	TA = TMIN to T	MAX			25	40	
	ton	TA = +25°C				10	30	
Delay Time (Note 1)		TA = TMIN to Tr	MAX			15	40	ns
CONTRACTOR OF STATE OF STATE OF STATE	tD2	TA = +25°C				25	50	
	-D2	TA = TMIN to T	XAX			30	60	

Note 1: Switching times guaranteed by design, not tested. See Figure 1 for timing measurement circuit.

MAX4426/4427/4428

Dual High-Speed 1.5A MOSFET Drivers

Applications Information

The MAX4426/4427/4428 have easy-to-drive inputs. However, these inputs must never be allowed to stay between VIH and VIL for more than 50ns. Unused inputs should always be connected to ground to minimize supply current. Drivers can be paralleled on the MAX4426 or MAX4427 by tying both inputs together and both outputs together.

Supply bypassing and grounding are extremely important with the MAX4426/4427/4428, as the peak supply current can be as high as 3A, which is twice the peak output current. Ground drops are a form of negative feedback with inverters, and hence will degrade the delay and transition time of the MAX4426/MAX4428.

Suggested bypass capacitors are a 4.7 μ F (low ESR) capacitor in parallel with a 0.1 μ F ceramic capacitor, mounted as close as possible to the MAX4426/4427/4428. Use a ground plane if possible or separate ground returns for inputs and outputs. Output voltage ringing can be minimized with a 5 Ω to 20 Ω resistor in series with the output, but this will degrade output transition time. Ringing may be undesirable due to the large current that flows through capacitive loads when the voltage across these loads transitions quickly.

Operation at the upper end of the supply voltage range (>15V) requires that a capacitance of at least 50pF be present at the outputs. This prevents the supply voltage provided to the die (which can be different from that seen at the IC supply pin) from exceeding the 20V absolute maximum rating, due to overshoot. Since at least 50pF of gate capacitance is present in all higher power FETs, this requirement is easily met.

Power Dissipation

The MAX4426/4427/4428 power dissipation consists of input inverter losses, crowbar current through the output devices, and output current (either capacitive or resistive). The sum of these must be kept below the maximum power dissipation limit.

The DC input inverter supply current is 0.2mA when both inputs are low and 2mA when both inputs are high. The crowbar current through an output device making a transition is approximately 100mA for a few nanoseconds. This is a small portion of the total supply current, except for high switching frequencies or a small load capacitance (100pF).

The MAX4426/4427/4428 power dissipation when driving a ground-referenced resistive load is:

$$P = (D) (ron(MAX)) (ILOAD^2)$$

where D is the percentage of time the MAX4426/4427/4428 output pulls high, ron(MAX) is the MAX4426/4427/4428 maximum on resistance, and I_{LOAD} is the MAX4426/4427/4428 load current.

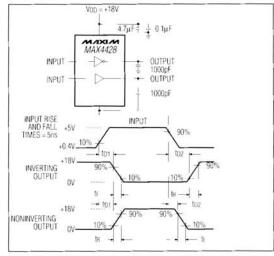
For capacitive loads, the power dissipation is:

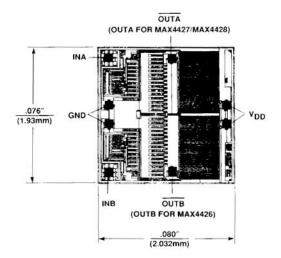
$$P = (C_{LOAD}) (V_{DD}^2) (FREQ)$$

where CLOAD is the capacitive load, VDD is the MAX4426/4427/4428 supply voltage, and FREQ is the toggle frequency.

MAX4426/4427/4428

Dual High-Speed 1.5A MOSFET Drivers



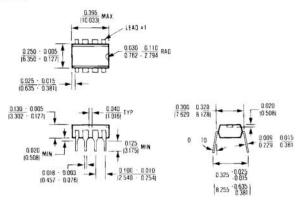

Figure 1. Inverting and Noninverting Test Circuit

Ordering Information (continued)

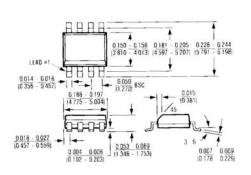
PART	TEMP RANGE	PIN-PACKAGE
MAX4427CPA	0°C to +70°C	8 Plastic DIP
MAX4427CSA	0°C to +70°C	8 SO
MAX4427C/D	0 C to +70 C	Dice*
MAX4427EPA	-40°C to +85°C	8 Plastic DIP
MAX4427ESA	-40°C to +85°C	8 SO
MAX4427EJA	-40°C to +85°C	8 CERDIP
MAX4427MJA	-55 C to +125 C	8 CERDIP**
MAX4428CPA	0 C to +70 C	8 Plastic DIP
MAX4428CSA	0°C to +70°C	8 SO
MAX4428C/D	0°C to +70°C	Dice*
MAX4428EPA	-40 C to +85 C	8 Plastic DIP
MAX4428ESA	-40°C to +85°C	8 SO
MAX4428EJA	-40 C to +85 C	8 CERDIP
MAX4428MJA	-55°C to +125°C	8 CERDIP**

^{*} Dice are tested at TA = +25 C

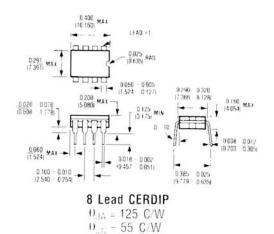
Chip Topography


SUBSTRATE CONNECTED TO VDD: TRANSISTOR COUNT: 26.

MAX4427/MAX4428


[&]quot; Contact factory for availability and processing to MIL-STD-883.

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

8 Lead Plastic DIP $\theta_{JA} = 120^{\circ} \text{ C/W}$ $\theta_{JC} = 70^{\circ} \text{ C/W}$

8 Lead Small Outline θ_{JA} = 170 C/W θ_{JC} = 80 C/W

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.