MAX481/MAX483/MAX485/ MAX487–MAX491/MAX1487 # Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers #### **General Description** The MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and one receiver. #### **Applications** - Low-Power RS-485 Transceivers - Low-Power RS-422 Transceivers - Level Translators - Transceivers for EMI-Sensitive Applications - Industrial-Control Local Area Networks #### **Benefits and Features** - Low Power Consumption Minimizes Thermal Dissipation, Reducing System Cost - 120µA to 500µA Quiescent Current - Shutdown Current of 0.1µA - · Single 5V Supply Voltage - Slew-Rate-Limited Drivers (MAX483/MAX487/ MAX488 and MAX489) - · Up to 250kbps Data Rate - · Unlimited Drivers: Up to 2.5Mbps Data Rate - Integrated Protection Enhances System Robustness - · Short Circuit Current Limited Driver - · Integrated Thermal Shutdown - Receiver Fail-Safe for Input Open Circuit Guarantees Logic High - 1/4 Unit Loading (MAX487/ MAX1487 only) Allows Up to 128 Devices on a Single Bus - 48kΩ Receiver Input Resistance Ordering Information appears at end of data sheet. #### **Selection Table** | PART
NUMBER | HALF/FULL
DUPLEX | DATA
RATE
(Mbps) | SLEW-RATE
LIMITED | LOW-POWER
SHUTDOWN | RECEIVER/
DRIVER
ENABLE | QUIESCENT
CURRENT
(µA) | NUMBER OF
RECEIVERS
ON BUS | PIN
COUNT | |----------------|---------------------|------------------------|----------------------|-----------------------|-------------------------------|------------------------------|----------------------------------|--------------| | MAX481 | Half | 2.5 | No | Yes | Yes | 300 | 32 | 8 | | MAX483 | Half | 0.25 | Yes | Yes | Yes | 120 | 32 | 8 | | MAX485 | Half | 2.5 | No | No | Yes | 300 | 32 | 8 | | MAX487 | Half | 0.25 | Yes | Yes | Yes | 120 | 128 | 8 | | MAX488 | Full | 0.25 | Yes | No | No | 120 | 32 | 8 | | MAX489 | Full | 0.25 | Yes | No | Yes | 120 | 32 | 14 | | MAX490 | Full | 2.5 | No | No | No | 300 | 32 | 8 | | MAX491 | Full | 2.5 | No | No | Yes | 300 | 32 | 14 | | MAX1487 | Half | 2.5 | No | No | Yes | 230 | 128 | 8 | # MAX481/MAX483/MAX485/ MAX487-MAX491/MAX1487 # Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers # **Absolute Maximum Ratings** | Supply Voltage (V _{CC})12V | 14-F | |--|-------------------| | Control Input Voltage (RE, DE)0.5V to (V _{CC} + 0.5V) | 8-Pi | | Driver Input Voltage (DI)0.5V to (V _{CC} + 0.5V) | 8-Pi | | Driver Output Voltage (A, B)8V to +12.5V | 14-F | | Receiver Input Voltage (A, B)8V to +12.5V | Opera | | Receiver Output Voltage (RO)0.5V to (V _{CC} +0.5V) | MAX | | Continuous Power Dissipation (T _A = +70°C) | MAX | | 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)727mW | MAX | | 14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)800mW | Storag | | 8-Pin SO (derate 5.88mW/°C above +70°C)471mW | Lead ⁻ | | 14-Pin SO (derate 8.33mW/°C above +70°
8-Pin µMAX (derate 4.1mW/°C above +70°
8-Pin CERDIP (derate 8.00mW/°C above - | °C)830mW | |--|-----------------| | 14-Pin CERDIP (derate 9.09mW/°C above | , | | Operating Temperature Ranges | . 10 0)12111111 | | MAX4 C /MAX1487C A | 0°C to +70°C | | MAX4E/MAX1487EA | 40°C to +85°C | | MAX4MJ_/MAX1487MJA | 55°C to +125°C | | Storage Temperature Range | 65°C to +160°C | | Lead Temperature (soldering, 10sec) | +300°C | | | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **DC Electrical Characteristics** (V_{CC} = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2) | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | |---|------------------|---|-----------------------|------|-----|------|-------| | Differential Driver Output (no load) | V _{OD1} | | | | | 5 | V | | Differential Driver Output | | $R = 50\Omega (RS-422)$ | | 2 | | | V | | (with load) | V _{OD2} | R = 27Ω (RS-485), Figure 4 | | 1.5 | | 5 |] V | | Change in Magnitude of Driver
Differential Output Voltage for
Complementary Output States | ΔV _{OD} | R = 27Ω or 50Ω , Figure 4 | | | | 0.2 | V | | Driver Common-Mode Output
Voltage | V _{OC} | R = 27Ω or 50Ω , Figure 4 | | | | 3 | V | | Change in Magnitude of Driver
Common-Mode Output Voltage for
Complementary Output States | ΔV _{OD} | R = 27Ω or 50Ω , Figure 4 | | | | 0.2 | V | | Input High Voltage | V _{IH} | DE, DI, RE | | 2.0 | | | V | | Input Low Voltage | V _{IL} | DE, DI, RE | | | | 0.8 | V | | Input Current | I _{IN1} | DE, DI, RE | | | | ±2 | μΑ | | | I _{IN2} | DE = 0V;
V _{CC} = 0V or 5.25V, all | V _{IN} = 12V | | | 1.0 | - mA | | Input Current (A, B) | | devices except MAX487/
MAX1487 | V _{IN} = -7V | | | -0.8 | IIIA | | | | MAX487/MAX1487, | V _{IN} = 12V | | | 0.25 | Λ | | | | DE = 0V, V_{CC} = 0V or 5.25V V_{IN} = -7V | V _{IN} = -7V | | | -0.2 | mA | | Receiver Differential Threshold Voltage | V _{TH} | -7V ≤ V _{CM} ≤ 12V | | -0.2 | | 0.2 | V | | Receiver Input Hysteresis | ΔV_{TH} | V _{CM} = 0V | | | 70 | | mV | | Receiver Output High Voltage | V _{OH} | I _O = -4mA, V _{ID} = 200mV | | 3.5 | | | V | | Receiver Output Low Voltage | V _{OL} | I _O = 4mA, V _{ID} = -200mV | | | | 0.4 | V | | Three-State (high impedance)
Output Current at Receiver | I _{OZR} | 0.4V ≤ V _O ≤ 2.4V | | | | ±1 | μА | | Receiver Input Resistance | R _{IN} | -7V ≤ V _{CM} ≤ 12V, all devices except
MAX487/MAX1487 | | 12 | | | kΩ | | | | -7V ≤ V _{CM} ≤ 12V, MAX487/MA | 48 | | | kΩ | | #### **DC Electrical Characteristics (continued)** (V_{CC} = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2) | PARAMETER | SYMBOL | CON | DITIONS | | MIN | TYP | MAX | UNITS | |--|-------------------|--|--------------------------|-------------------|-----|-----|-----|-------| | | | MAX488/MAX489,
DE, DI, RE = 0V or V _{CC} | | | | 120 | 250 | | | | | MAX490/MAX491,
DE, DI, RE = 0V or | V _{CC} | | | 300 | 500 | | | | | MAX481/MAX485, | DE = V _{CC} | | | 500 | 900 |] . | | No-Load Supply Current (Note 3) | Icc | RE = 0V or V _{CC} | DE = 0V | | | 300 | 500 | μA | | | | MAX1487, | DE = V _{CC} | | | 300 | 500 | | | | | RE = 0V or V _{CC} | DE = 0V | | | 230 | 400 | | | | | MAX483/MAX487,
RE = 0V or V _{CC} | DE = 5V | MAX483 | | 350 | 650 | | | | | | | MAX487 | | 250 | 400 | | | | | | DE = 0V | | | 120 | 250 | | | Supply Current in Shutdown | I _{SHDN} | MAX481/483/487, [| $DE = 0V, \overline{RE}$ | = V _{CC} | | 0.1 | 10 | μA | | Driver Short-Circuit Current,
V _O = High | I _{OSD1} | -7V ≤ VO ≤12V (Note 4) | | 35 | | 250 | mA | | | Driver Short-Circuit Current,
V _O = Low | I _{OSD2} | -7V ≤ VO ≤12V (Note 4) | | 35 | | 250 | mA | | | Receiver Short-Circuit Current | I _{OSR} | 0V ≤ VO ≤ V _{CC} | | | 7 | | 95 | mA | # Switching Characteristics—MAX481/MAX485, MAX490/MAX491, MAX1487 (V_{CC} = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2) | PARAMETER | SYMBOL | С | ONDITIONS | MIN | TYP | MAX | UNITS | |---|-------------------------------------|--|--|-----|-----|-----|-------| | Driver Input to Output | t _{PLH} | Figures 6 and 8, | Figures 6 and 8, $R_{DIFF} = 54\Omega$, | | 30 | 60 | no | | Driver Input to Output | t _{PHL} | $C_{L1} = C_{L2} = 100$ |)pF | 10 | 30 | 60 | ns | | Driver Output Skew to Output | tskew | Figures 6 and 8,
C _{L1} = C _{L2} = 100 | R _{DIFF} = 54Ω,
)pF | | 5 | 10 | ns | | Driver Rise or Fall Time | +_ +_ | Figures 6 and
8, R _{DIFF} = | MAX481, MAX485,
MAX1487 | 3 | 15 | 40 | no | | Driver Rise or Fall Time | t_R , t_F | $54Ω$, C_{L1} = | MAX490C/E, MAX491C/E | 5 | 15 | 25 | ns | | | | $C_{L2} = 100pF$ | MAX490M, MAX491M | 3 | 15 | 40 | | | Driver Enable to Output High | t _{ZH} | Figures 7 and 9, | C _L = 100pF, S2 closed | | 40 | 70 | ns | | Driver Enable to Output Low | t _{ZL} | Figures 7 and 9, | Figures 7 and 9, C _L = 100pF, S1 closed | | 40 | 70 | ns | | Driver Disable Time from Low | t _{LZ} | Figures 7 and 9, | Figures 7 and 9, C _L = 15pF, S1 closed | | 40 | 70 | ns | | Driver Disable Time from High | t _{HZ} | Figures 7 and 9, | C _L = 15pF, S2 closed | | 40 | 70 | ns | | Pagainer Invest to Output | | Figures 6 and 10, R _{DIFF} = | MAX481, MAX485,
MAX1487 | 20 | 90 | 200 | ns | | Receiver Input to Output | t _{PLH} , t _{PHL} | $54\Omega, C_{L1} = C_{L2} = 100pF$ | MAX490C/E, MAX491C/E | 20 | 90 | 150 | | | | | | MAX490M, MAX491M | 20 | 90 | 200 | | | t _{PLH} - t _{PHL} Differential
Receiver Skew | t _{SKD} | Figures 6 and 10, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF | | | 13 | | ns | | Receiver Enable to Output Low | t _{ZL} | Figures 5 and 11, C _{RL} = 15pF, S1 closed | | | 20 | 50 | ns | | Receiver Enable to Output High | t _{ZH} | Figures 5 and 11, C _{RL} = 15pF, S2 closed | | | 20 | 50 | ns | | Receiver Disable Time from Low | t _{LZ} | Figures 5 and 11, C _{RL} = 15pF, S1 closed | | | 20 | 50 | ns | | Receiver Disable Time from High | t _{HZ} | Figures 5 and 11, C _{RL} = 15pF, S2 closed | | | 20 | 50 | ns | | Maximum Data Rate | f _{MAX} | | | 2.5 | | | Mbps | | Time to Shutdown | tSHDN | MAX481 (Note 5) | | 50 | 200 | 600 | ns | ## Switching Characteristics—MAX481/MAX485, MAX490/MAX491, MAX1487 (continued) (V_{CC} = 5V ±5%, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.) (Notes 1, 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|-----------------------|--|-----|-----|------|-------| | Driver Enable from Shutdown to Output High (MAX481) | t _{ZH(SHDN)} | Figures 7 and 9, C _L = 100pF, S2 closed | | 40 | 100 | ns | | Driver Enable from Shutdown to Output Low (MAX481) | t _{ZL(SHDN)} | Figures 7 and 9, C _L = 100pF, S1 closed | | 40 | 100 | ns | | Receiver Enable from Shutdown to Output High (MAX481) | t _{ZH(SHDN)} | Figures 5 and 11, C _L = 15pF, S2 closed, A - B = 2V | | 300 | 1000 | ns | | Receiver Enable from Shutdown to Output Low (MAX481) | t _{ZL(SHDN)} | Figures 5 and 11, C _L = 15pF, S1 closed, B - A = 2V | | 300 | 1000 | ns | #### Switching Characteristics—MAX483, MAX487/MAX488/MAX489 (V_{CC} = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |--|---------------------------------|--|-----|-----|------|-------|--| | Driver Input to Output | t _{PLH} | | | 800 | 2000 | ns | | | Driver input to Output | t _{PHL} | | | 800 | 2000 | 115 | | | Driver Output Skew to Output | t _{SKEW} | Figures 6 and 8, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF | | 100 | 800 | ns | | | Driver Rise or Fall Time | t _R , t _F | Figures 6 and 8, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF | 250 | | 2000 | ns | | | Driver Enable to Output High | t _{ZH} | Figures 7 and 9, C _L = 100pF, S2 closed | 250 | | 2000 | ns | | | Driver Enable to Output Low | t _{ZL} | Figures 7 and 9, C _L = 100pF, S1 closed | 250 | | 2000 | ns | | | Driver Disable Time from Low | t _{LZ} | Figures 7 and 9, C _L = 15pF, S1 closed | 300 | | 3000 | ns | | | Driver Disable Time from High | t _{HZ} | Figures 7 and 9, C _L = 15pF, S2 closed | 300 | | 3000 | ns | | | Pagaivar Input to Output | t _{PLH} | Figures 6 and 10, $R_{DIFF} = 54\Omega$, | 250 | | 2000 | no | | | Receiver Input to Output | t _{PHL} | $C_{L1} = C_{L2} = 100 pF$ | 250 | | 2000 | ns | | | It _{PLH} - t _{PHL} I Differential
Receiver Skew | t _{SKD} | Figures 6 and 10, R_{DIFF} = 54 Ω , C_{L1} = C_{L2} = 100pF | | 100 | | ns | | | Receiver Enable to Output Low | t _{ZL} | Figures 5 and 11, C _{RL} = 15pF, S1 closed | | 20 | 50 | ns | | | Receiver Enable to Output High | t _{ZH} | Figures 5 and 11, C _{RL} = 15pF, S2 closed | | 20 | 50 | ns | | | Receiver Disable Time from Low | t _{LZ} | Figures 5 and 11, C _{RL} = 15pF, S1 closed | | 20 | 50 | ns | | | Receiver Disable Time from High | t _{HZ} | Figures 5 and 11, C _{RL} = 15pF, S2 closed | | 20 | 50 | ns | | | Maximum Data Rate | f _{MAX} | t _{PLH} , t _{PHL} < 50% of data period | 250 | | | kbps | | | Time to Shutdown | t _{SHDN} | MAX483/MAX487 (Note 5) | 50 | 200 | 600 | ns | | | Driver Enable from Shutdown to
Output High | t _{ZH(SHDN)} | MAX483/MAX487 Figures 7 and 9 | | | 2000 | ns | | | Driver Enable from Shutdown to
Output Low | t _{ZL(SHDN)} | MAX483/MAX487, Figures 7 and 9,
C _L = 100pF, S1 closed | | | 2000 | ns | | | Receiver Enable from Shutdown to Output High | t _{ZH(SHDN)} | MAX483/MAX487, Figures 5 and 11,
C _L = 15pF, S2 closed | | | 2500 | ns | | | Receiver Enable from Shutdown to Output Low | t _{ZL(SHDN)} | MAX483/MAX487, Figures 5 and 11,
C _L = 15pF, S1 closed | | | 2500 | ns | | # Notes for Electrical/Switching Characteristics—MAX481/MAX485, MAX490/MAX491, MAX1487 $(V_{CC} = 5V \pm 5\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$ (Notes 1, 2) - **Note 1:** All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified. - **Note 2:** All typical specifications are given for V_{CC} = 5V and T_A = +25°C. - Note 3: Supply current specification is valid for loaded transmitters when DE = 0V. - Note 4: Applies to peak current. See Typical Operating Characteristics. - Note 5: The MAX481/MAX483/MAX487 are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section. #### **Typical Operating Characteristics** $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$ ### **Typical Operating Characteristics (continued)** (V_{CC} = 5V, T_A = +25°C, unless otherwise noted.) # **Pin Description** | PIN | | | | | | | |-----------------------------|---------|-------------------|------|-------------------|--|---| | MAX481/I
MAX485/I
MAX | MAX487/ | MAX488/
MAX490 | | MAX489/
MAX491 | NAME | FUNCTION | | DIP/SO | μMAX | DIP/SO | μМΑΧ | DIP/SO | | | | 1 | 3 | 2 | 4 | 2 | RO | Receiver Output: If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low. | | 2 | 4 | _ | _ | 3 | RE | Receiver Output Enable. RO is enabled when \overline{RE} is low; RO is high impedance when \overline{RE} is high. | | 3 | 5 | _ | _ | 4 | DE | Driver Output Enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if $\overline{\text{RE}}$ is low. | | 4 | 6 | 3 | 5 | 5 | DI | Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low. | | 5 | 7 | 4 | 6 | 6,7 | GND | Ground | | _ | _ | 5 | 7 | 9 | Υ | Noninverting Driver Output | | _ | _ | 6 | 8 | 10 | Z | Inverting Driver Output | | 6 | 8 | _ | _ | _ | А | Noninverting Receiver Input and Noninverting Driver Output | | _ | _ | 8 | 2 | 12 | Α | Noninverting Receiver Input | | 7 | 1 | _ | _ | _ | B Inverting Receiver Input and Inverting Driver Output | | | | _ | 7 | 1 | 11 | В | Inverting Receiver Input | | 8 | 2 | 1 | 3 | 14 | V _{CC} | Positive Supply: 4.75V ≤ V _{CC} ≤ 5.25V | | _ | _ | _ | _ | 1, 8, 13 | N.C. | No Connect—not internally connected | Figure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating Circuit Figure 2. MAX488/MAX490 Pin Configuration and Typical Operating Circuit Figure 3. MAX489/MAX491 Pin Configuration and Typical Operating Circuit #### **Applications Information** The MAX481/MAX483/MAX485/MAX487–MAX491 and MAX1487 are low-power transceivers for RS-485 and RS-422 communications. The MAX481, MAX485, MAX490, MAX491, and MAX1487 can transmit and receive at data rates up to 2.5Mbps, while the MAX483, MAX487, MAX488, and MAX489 are specified for data rates up to 250kbps. The MAX488–MAX491 are full-duplex transceivers while the MAX481, MAX483, MAX485, MAX487, and MAX1487 are half-duplex. In addition, Driver Enable (DE) and Receiver Enable ($\overline{\text{RE}}$) pins are included on the MAX481, MAX483, MAX485, MAX487, MAX489, MAX491, and MAX1487. When disabled, the driver and receiver outputs are high impedance. #### MAX487/MAX1487: 128 Transceivers on the Bus The $48k\Omega$, 1 /₄-unit-load receiver input impedance of the MAX487 and MAX1487 allows up to 128 transceivers on a bus, compared to the 1-unit load ($12k\Omega$ input impedance) of standard RS-485 drivers (32 transceivers maximum). Any combination of MAX487/MAX1487 and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481/MAX483/MAX485 and MAX488–MAX491 have standard $12k\Omega$ Receiver Input impedance. #### **Test Circuits** Figure 4. Driver DC Test Load Figure 6. Driver/Receiver Timing Test Circuit # MAX483/MAX487/MAX488/MAX489: Reduced EMI and Reflections The MAX483 and MAX487–MAX489 are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 12 shows the driver output waveform and its Fourier analysis of a 150kHz signal transmitted by a MAX481, MAX485, MAX490, Figure 5. Receiver Timing Test Load Figure 7. Driver Timing Test Load MAX491, or MAX1487. High-frequency harmonics with large amplitudes are evident. Figure 13 shows the same information displayed for a MAX483, MAX487, MAX488, or MAX489 transmitting under the same conditions. Figure 13's high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced. ## **Switching Waveforms** Figure 8. Driver Propagation Delays Figure 9. Driver Enable and Disable Times (except MAX488 and MAX490) Figure 10. Receiver Propagation Delays Figure 11. Receiver Enable and Disable Times (except MAX488 and MAX490) #### Function Tables (MAX481/MAX483/MAX485/MAX487/MAX1487) #### **Table 1. Transmitting** | | | _ | | | |----|--------|----|---------|---------| | | INPUTS | | OUTI | PUTS | | RE | DE | DI | Z | Υ | | Х | 1 | 1 | 0 | 1 | | X | 1 | 0 | 1 | 0 | | 0 | 0 | Х | High-Z | High-Z | | 1 | 0 | Х | High-Z* | High-Z* | X = Don't care High-Z = High impedance #### Table 2. Receiving | | OUTPUT | | | |----|--------|-------------|---------------| | RE | DE | A-B | RO | | 0 | 0 | > +0.2V | 1 | | 0 | 0 | < -0.2V | 0 | | 0 | 0 | Inputs open | 1 | | 1 | 0 | X | High-Z* | | 0 | 0 | Shorted | Indeterminate | X = Don't care High-Z = High impedance ^{*} Shutdown mode for MAX481/MAX483/MAX487 ^{*} Shutdown mode for MAX481/MAX483/MAX487 ## MAX481/MAX483/MAX485/ MAX487–MAX491/MAX1487 # Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers Figure 12. Driver Output Waveform and FFT Plot of MAX481/ MAX485/MAX490/MAX491/MAX1487 Transmitting a 150kHz Signal # 10dB/div 10dB/div 10dB/div 10dB/div 500kHz/div Figure 13. Driver Output Waveform and FFT Plot of MAX483/ Figure 13. Driver Output Waveform and FFT Plot of MAX483/ MAX487–MAX489 Transmitting a 150kHz Signal # Low-Power Shutdown Mode (MAX481/MAX483/MAX487) A low-power shutdown mode is initiated by bringing both \overline{RE} high and DE low. The devices will not shut down unless both the driver and receiver are disabled. In shutdown, the devices typically draw only 0.1µA of supply current. $\overline{\text{RE}}$ and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if $\overline{\text{RE}}$ is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown. For the MAX481, MAX483, and MAX487, the t_{ZH} and t_{ZL} enable times assume the part was not in the lowpower shutdown state (the MAX485/MAX488–MAX491 and MAX1487 can not be shut down). The $t_{ZH(SHDN)}$ and $t_{ZL(SHDN)}$ enable times assume the parts were shut down (see *Electrical Characteristics*). It takes the drivers and receivers longer to become enabled from the low-power shutdown state ($t_{ZH(SHDN)}$, $t_{ZL(SHDN)}$) than from the operating mode (t_{ZH} , t_{ZL}). (The parts are in operating mode if the \overline{RE} , DE inputs equal a logical 0,1 or 1,1 or 0, 0.) #### **Driver Output Protection** Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see *Typical Operating Characteristics*). In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively. #### **Propagation Delay** Many digital encoding schemes depend on the difference between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 15–18 using Figure 14's test circuit. The difference in receiver delay times, \mid tp_{LH} - tp_{HL} \mid , is typically under 13ns for the MAX481, MAX485, MAX490, MAX491, and MAX1487 and is typically less than 100ns for the MAX483 and MAX487–MAX489. The driver skew times are typically 5ns (10ns max) for the MAX481, MAX485, MAX490, MAX491, and MAX1487, and are typically 100ns (800ns max) for the MAX483 and MAX487–MAX489. Figure 14. Receiver Propagation Delay Test Circuit Figure 15. MAX481/MAX485/MAX490/MAX491/MAX1487 Receiver t_{PHL} Figure 16. MAX481/MAX485/MAX490/MAX491/MAX1487 Receiver t_{PLH} Figure 17. MAX483, MAX487-MAX489 Receiver t_{PHL} Figure 18. MAX483, MAX487-MAX489 Receiver t_{PLH} ## MAX481/MAX483/MAX485/ MAX487–MAX491/MAX1487 # Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers #### Line Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23. Figures 19 and 20 show the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 120Ω loads. #### **Typical Applications** The MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23. To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX483 and MAX487—MAX489 are more tolerant of imperfect termination. Figure 19. MAX481/MAX485/MAX490/MAX491/MAX1487 System Differential Voltage at 110kHz Driving 4000ft of Cable Figure 20. MAX483, MAX487–MAX489 System Differential Voltage at 110kHz Driving 4000ft of Cable Figure 21. MAX481/MAX483/MAX485/MAX487/MAX1487 Typical Half-Duplex RS-485 Network Figure 22. MAX488-MAX491 Full-Duplex RS-485 Network Figure 23. Line Repeater for MAX488-MAX491 #### **Isolated RS-485** For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets. # **Ordering Information** | PART | TEMP. RANGE | PIN-PACKAGE | |-----------|----------------------------------|-----------------------| | MAX481CPA | 0°C to +70°C | 8 Plastic DIP | | MAX481CSA | 0°C to +70°C | 8 SO | | MAX481CUA | 0°C to +70°C | 8 µMAX | | MAX481C/D | 0°C to +70°C | Dice* | | MAX481EPA | -40°C to +85°C | 8 Plastic DIP | | MAX481ESA | -40°C to +85°C | 8 SO | | MAX481MJA | -55°C to +125°C | 8 CERDIP | | MAX483CPA | 0°C to +70°C | 8 Plastic DIP | | MAX483CSA | 0°C to +70°C | 8 SO | | MAX483CUA | 0°C to +70°C | 8 µMAX | | MAX483C/D | 0°C to +70°C | Dice* | | MAX483EPA | -40°C to +85°C | 8 Plastic DIP | | MAX483ESA | -40°C to +85°C | 8 SO | | MAX483MJA | -55°C to +125°C | 8 CERDIP | | MAX485CPA | 0°C to +70°C | 8 Plastic DIP | | MAX485CSA | 0°C to +70°C | 8 SO | | MAX485CUA | 0°C to +70°C | 8 µMAX | | MAX485C/D | 0°C to +70°C | Dice* | | MAX485EPA | -40°C to +85°C | 8 Plastic DIP | | MAX485ESA | -40°C to +85°C | 8 SO | | MAX485MJA | -55°C to +125°C | 8 CERDIP | | MAX487CPA | 0°C to +70°C | 8 Plastic DIP | | MAX487CSA | 0°C to +70°C | 8 SO | | MAX487CUA | 0°C to +70°C | 8 µMAX | | MAX487C/D | 0°C to +70°C | Dice* | | MAX487EPA | -40°C to +85°C | 8 Plastic DIP | | MAX487ESA | -40°C to +85°C | 8 SO | | MAX487MJA | -55°C to +125°C | 8 CERDIP | | MAX488CPA | 0°C to +70°C | 8 Plastic DIP | | MAX488CSA | 0°C to +70°C | 8 SO | | MAX488CUA | 0°C to +70°C | 8 µMAX | | MAX488C/D | 0°C to +70°C | Dice* | | | | | | MAX488EPA | -40°C to +85°C | 8 Plastic DIP | | | -40°C to +85°C
-40°C to +85°C | 8 Plastic DIP
8 SO | | PART | TEMP. RANGE | PIN-PACKAGE | |------------|-----------------|----------------| | MAX489CPD | 0°C to +70°C | 14 Plastic DIP | | MAX489CSD | 0°C to +70°C | 14 SO | | MAX489C/D | 0°C to +70°C | Dice* | | MAX489EPD | -40°C to +85°C | 14 Plastic DIP | | MAX489ESD | -40°C to +85°C | 14 SO | | MAX489MJD | -55°C to +125°C | 14 CERDIP | | MAX490CPA | 0°C to +70°C | 8 Plastic DIP | | MAX490CSA | 0°C to +70°C | 8 SO | | MAX490CUA | 0°C to +70°C | 8 μMAX | | MAX490C/D | 0°C to +70°C | Dice* | | MAX490EPA | -40°C to +85°C | 8 Plastic DIP | | MAX490ESA | -40°C to +85°C | 8 SO | | MAX490MJA | -55°C to +125°C | 8 CERDIP | | MAX491CPD | 0°C to +70°C | 14 Plastic DIP | | MAX491CSD | 0°C to +70°C | 14 SO | | MAX491C/D | 0°C to +70°C | Dice* | | MAX491EPD | -40°C to +85°C | 14 Plastic DIP | | MAX491ESD | -40°C to +85°C | 14 SO | | MAX491MJD | -55°C to +125°C | 14 CERDIP | | MAX1487CPA | 0°C to +70°C | 8 Plastic DIP | | MAX1487CSA | 0°C to +70°C | 8 SO | | MAX1487CUA | 0°C to +70°C | 8 µMAX | | MAX1487C/D | 0°C to +70°C | Dice* | | MAX1487EPA | -40°C to +85°C | 8 Plastic DIP | | MAX1487ESA | -40°C to +85°C | 8 SO | | MAX1487MJA | -55°C to +125°C | 8 CERDIP | ^{*} Contact factory for dice specifications. # MAX481/MAX483/MAX485/ MAX487-MAX491/MAX1487 Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers ## **Package Information** For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. | PACKAGE TYPE | PACKAGE CODE | OUTLINE NO. | LAND PATTERN NO. | |--------------|--------------|-------------|------------------| | 8 PDIP | P8-1 | 21-0043 | _ | | 8 SO | S8-2 | 21-0041 | 90-0096 | | 8 μMAX | U8-1 | 21-0036 | 90-0092 | | 8 CERDIP | J8-2 | 21-0045 | _ | | 14 PDIP | P14-3 | 21-0043 | _ | | 14 SO | S14-1 | 21-0041 | 90-0112 | | 14 CERDIP | J14-3 | 21-0045 | _ | # MAX481/MAX483/MAX485/ MAX487-MAX491/MAX1487 # Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers ## **Revision History** | REVISION
NUMBER | REVISION
DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|------------------|--|------------------| | 0 | 1/93 | Initial release. | _ | | 9 | 9/09 | Changed column name in Selection Table to "Number of Receivers on Bus." | 1 | | 10 | 9/14 | Added MAX491MSD/PR and MAX491MSD/PR-T to data sheet. Updated Absolute Maximum Ratings. | 2, 15 | | 11 | 12/16 | Updated Table 2 | 10 | For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.