ООО НТЦ "Магистр-С"

Устройство микродуговой сварки «Магистр-УМД-02-250»

Руководство по эксплуатации

и паспорт

г. Саратов 2016 г.

Оглавление

І. ТЕХНИЧЕСКОЕ ОПИСАНИЕ	3
1.1 Назначение	3
1.2 Технические характеристики	3
1.3 Описание и работа	5
1.4 Комплектность устройства	8
1.5 Маркировка	9
II. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ	9
2.1 Общие указания	9
2.2 Указания мер безопасности	9
2.3 Порядок работы	10
2.3.1 Подготовка устройства к работе	
2.3.2Работа с устройством	
2.3.2.1 Выбор диаграммы и изменение ее параметров	12
2.3.2.2 Загрузка, изменение и удаление профилей	15
2.3.2.3 Тестовые режимы	16
2.3.2.4 Конфигурация	17
2.3.2.5 Подготовка сварочного электрода	
2.3.2.6 Выполнение сварки	
2.3.2.6.1 Микродуговая сварка	20
2.3.2.6.2 Контактная сварка	20
2.4 Техническое обслуживание и ремонт	
III. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ	21
IV. ГАРАНТИИ ИЗГОТОВИТЕЛЯ	21
V. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	22
VI. ДАННЫЕ ОБ ИЗГОТОВИТЕЛЕ	22

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления пользователей устройством, принципом функционирования, с конструкцией, технологическими параметрами, а также для изучения правил монтажа, эксплуатации, обслуживания технического И хранения устройства микродуговой сварки «Магистр-УМД-02-250» (далее по тексту - устройство).

Предприятие-изготовитель сохраняет за собой право на внесение изменений в конструкцию устройства, не влияющих на его характеристики.

І. ТЕХНИЧЕСКОЕ ОПИСАНИЕ

1.1 Назначение

1.1.1 Устройство микродуговой сварки предназначено для сварки изделий из металлов и сплавов в среде защитного газа.

1.1.2 По устойчивости к климатическим воздействиям устройство соответствует климатическому исполнению УХЛ 4.2 по ГОСТ 15150.

1.2 Технические характеристики

Основные технические характеристики приведены в таблице 1. Рекомендуемая рабочая область для прямоугольного импульса показана на графике 1. Рекомендованное минимальное время между точками сварки показано на графике. 2.

Таблица 1

Наименование параметра, характеристики	Значение
1 Питание от сети переменного тока (частотой 50±1 Гц) напряжением, В	198-242
2 Потребляемая мощность, ВА, не более	500
3 Максимальная энергия сварочного импульса, Дж, не менее	250
4 Минимальный амплитуда тока микродуговой сварки, А	6
5 Максимальный амплитуда тока микродуговой сварки, А	300
6 Максимальное количество диаграмм микродуговой сварки	9
7 Минимальный ток контактной сварки, А	30
8 Амплитуда ВЧ-возбуждения, % от амплитуды тока сварки	1 100
9 Частота ВЧ-возбуждения, кГц	0.5 10
10 Максимальный амплитуда тока контактной сварки, А	300
11 Диапазон задания длительности импульса сварки, мс	1 150
12 Максимальное количество профилей на каждую диаграмму	9
13 Диаметр вольфрамового электрода, мм	1

10,0 30,0 50,0 70,0 90,0 110,0 130,0 150,0 170,0 190,0 210,0 230,0 250,0 270,0 290,0

График. 1 Рабочая область (для прямоугольного импульса). Вертикальная ось — время сварки [мс], горизонтальная ось — значения тока сварки [А].

График. 2 Минимальное время между точками сварки.). Вертикальная ось — время между импульсами [с], горизонтальная ось — энергия импульса [Дж].

1.3 Описание и работа

Устройство состоит из блока управления, штатива, сварочного инструмента, микроскопа и редуктора для газового баллона с соединительным шлангом.

Фото 1. Общий вид устройства

Штатив предназначен для крепления в рабочем положении сварочного инструмента. Он состоит из основания и штанги с крепежным узлам, в котором закреплен сварочный инструмент. Крепежный узел позволяет выбрать наиболее удобное для оператора расположение инструмента. На штативе имеется осветительный элемент для подсветки места сварки и защитный светофильтр, который затемняется на время формирования сварочного импульса.

Микроскоп предназначен для увеличения изображения свариваемых объектов и вольфрамового электрода, что значительно облегчает их позиционирование относительно друг друга и предоставляет больший контроль над процессом сварки.

Сварочный инструмент микродуговой сварки предназначен для крепления вольфрамового электрода, его отвода от детали в процессе сварки, а также для подачи к месту сварки инертного газа. Блок управления формирует электрические импульсы заданной формы с требуемыми характеристиками (ток и длительность), которые подаются к сварочному инструменту и далее на вольфрамовый электрод. Кроме того блок управления соединен со сварочным инструментом трубкой, по которой во время разряда к месту сварки подается инертный газ. Подача газа осуществляется из сопла, в центре которого размещен вольфрамовый электрод. Конусовидное сопло является съемным для обеспечения доступа к узлу крепления сварочного электрода. Электрод крепится в цанговом зажиме с затяжной гайкой. Сварочный инструмент контактной сварки представляет собой вольфрамовый электрод, зажатый в специальном держателе. Держатель имеет рукоять, за которую оператор берет инструмент и прижимает рабочий конец электрода к месту сварки.

Редуктор для газового баллона с соединительным шлангом предназначен для подключения блока управления к баллону с инертным газом и обеспечения требуемого потока газа через место сварки.

Фото 2. Общий вид блока управления

Блок управления формирует сварочные импульсы с заданными параметрами, управляет с помощью встроенного клапана подачей инертного газа в сварочный инструмент, управляет электромагнитом отвода электрода от детали. Кроме того блок управления предоставляет пользователю средства для выбора, изменения и сохранения параметров сварки. Общий вид блока управления показан на фото 2. Конструктивно блок управления выполнен в металлическом корпусе, на задней панели которого расположены клемма заземления, сетевой шнур, сетевой предохранитель и штуцер подключения инертного газа. На передней панели блока управления (см. фото. 3) расположены цветной ЖК-дисплей, два поворотно-нажимных регулятора (энкодера), переключатель «ИНСТРУМЕНТ» для выбора режима микродуговой или контактной сварки, кнопка «ЗАПУСК» для выбора типа запуска. На нижней части передней панели слева направо расположены: электрический соединитель (разъем) инструмента микродуговой сварки, над которым находится штуцер для подсоединения газовой трубки инструмента, далее расположены две клеммы — нижняя для подключения общего провода («массы») и верхняя для подключения инструмента контактной сварки, далее находятся электрические соединитель подключения педали, а за ним соединитель подключения блока защитного фильтра микроскопа с лампой подсветки, над которым расположена клавиша включения питания.

Фото.3. Передняя панель блока управления

При помощи регуляторов и ЖК-дисплея оператор выбирает требуемые режимы сварки, изменяет их, и сохраняет изменения в памяти устройства. Более подробно эти операции будут рассмотрены в соответствующем разделе. Переключатель режима работы определяет режим сварки: микродуговой или контактный. Кнопка выбора типа запуска позволяет выбрать способ запуска микродуговой сварки: по нажатию педали либо касанием деталью сварочного электрода.

Цикл микродуговой сварки начинается после выполнения условий, требуемых выбранным типом запуска (нажатием педали или по касанию электрода). Энергия к месту сварки подается через вольфрамовый электрод (-) и подключаемый к детали провод с зажимом (+). Определив момент начала цикла, блок управления подает звуковой сигнал, затемняет защитный светофильтр микроскопа и включает подачу инертного газа. Через заданное в настройках время (0.1..0.8 с) включается подача на сварочный электрод тока заданной формы, а электромагнит сварочного инструмента отводит электрод от детали на 0.8 ... 1.2мм, в результате чего между деталью и электродом возникает кратковременный дуговой разряд с заданными оператором током и длительностью, после завершения разряда электрод вернется в исходное состояние, выключится затемнение защитного светофильтра и устройство будет готов к повторению сварочного цикла. Если через заданное в настройках время не начался новый цикл, то отключается подача газа.

В режиме контактной сварки цикл всегда начинается по нажатию педали. Сварочный импульс тока прямоугольной формы с заданными параметрами тока и длительности проходит через место сварки от «общего» электрода (с зажимом) к электроду контактной сварки.

1.4 Комплектность устройства

Комплект поставки устройства микродуговой сварки «Магистр-УМД-02-250» должен соответствовать указанному в таблице 2.

Таблица 2

Наименование	Кол-во
Блок управления	1
Инструмент микродуговой сварки	1
Инструмент контактной сварки	1
Вольфрамовый электрод диаметром 1мм	5
Пинцет сварочный	1
Штатив с осветителем и защитным светофильтром	1
Провод с зажимом «крокодил»	1
Педаль	1
Микроскоп	1
Регулятор расхода газа	1
Газовый шланг (1.5 м)	1
Хомут (на газовый шланг)	2
Ключ	1
Руководство по эксплуатации и паспорт	1
Упаковочный ящик	1

1.5 Маркировка

На блок управления нанесена маркировка, содержащая:

- товарный знак предприятия-изготовителя;
- наименование предприятия-изготовителя;
- наименование изделия;
- обозначение года выпуска;
- номинальное напряжения питания и номинальную потребляемую мощность;
- заводской серийный номер блока;

II. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

2.1 Общие указания

В помещении где будет эксплуатироваться устройство, должны соблюдаться следующие условия:

- диапазон температур окружающего воздуха, °С	+15 +35
- относительная влажность воздуха, не более, %, без конденсации влаги	85
- высота над уровнем моря, не более, м	1000

2.2 Указания мер безопасности

2.2.1 При техническом обслуживании устройства действуют общие положения по технике безопасности в соответствии с требованиями ГОСТ 12.1.019, ГОСТ 12.2.003, ГОСТ 12.2.007.0, ГОСТ 12.2.007.11.

2.2.2 Категорически запрещается производить работы по устранению неисправностей на подключенном к электропитанию устройстве.

2.2.3 **Категорически запрещается** производить несанкционированное регулирование и разборку устройства.

2.2.4 **Категорически запрещается** эксплуатировать устройство без защитного заземления.

2.2.5 Во избежание несчастных случаев и аварий запрещается приступать к работе с устройством, не ознакомившись с настоящим РЭ.

2.2.6 В процессе работы деталь и сварочный электрод могут нагреваться до значительных температур (более 100°С), поэтому следует соблюдать осторожность во время работы с ними.

2.2.7 Запрещается смотреть на сварочную дугу без защитного светофильтра.

2.2.8 Запрещается работать на устройстве в одежде из синтетических материалов.

2.2.9 Запрещается работа рядом с ЛВЖ и ГСМ.

2.2.10 Рекомендуется использование систем вытяжной вентиляции.

2.2.11 Рекомендуется работа в защитных перчатках (ХБ)

2.3 Порядок работы

2.3.1 Подготовка устройства к работе

Проверьте комплектность устройства на соответствие п. 1.4 настоящего РЭ и внешний вид составных частей на отсутствие механических повреждений.

Установите штатив и блок управления на устойчивой горизонтальной поверхности. Подсоедините провод заземления к соответствующей клемме на задней панели блока управления.

Установите на вертикальную штангу штатива держатель сварочного инструмента и микроскоп. Отрегулируйте их положение наиболее удобным образом и закрепите стопорными винтами.

Подсоедините кабели к разъемам на передней панели блока управления, согласно описанию на странице 6. Наденьте газовую трубку сварочного инструмента на штуцер передней панели блока управления. Подсоедините редуктор к баллону с инертным газом, а свободный конец шланга наденьте на штуцер задней панели блока управления. Вставьте вилку шнура питания блока управления в розетку сети переменного тока 220 В 50Гц.

2.3.2Работа с устройством

Управление работой устройства осуществляется при помощи ЖК-дисплея, двух поворотно-нажимных регуляторов, переключателя режима работы и кнопки выбора типа запуска. В верхней строке ЖК-дисплея отображается текущее состояние устройства. Слева отображается значок готовности силового модуля — если силовой модуль готов к работе, то значок имеет зеленый цвет и символ подключения 💉 , а если силовой модуль не отвечает на команды, то значок будет представлен красным символом отключения 💉 . Справа от значка готовности силового модуля отображается режим запуска, он показывает действие, которое запускает процесс сварки: для сварки по нажатию педали **1** и для сварки по касанию электрода **7** деталью. Для контактной сварки доступен только запуск от педали,

для микродуговой — оба режима. Далее отображаются текущая сварочная диаграмма и рабочее напряжение силового блока. В правой половине верхней строки указан текущий профиль сварки.

Диаграмма сварки представляет собой совокупность характеристик сварочного цикла, специфичных для определенных условий сварки. Сюда входят форма сварочного импульса, время и ток предварительного (до отвода электрода) разогрева детали, а также наличие и параметры ВЧ-возбуждения. Блок управления хранит список из девяти диаграмм, каждая из которых может быть изменена или выбрана в качестве рабочей.

Для контактной сварки используется только импульсы прямоугольной формы без дополнительных особенностей, а при включении режима контактной сварки вместо сварочной диаграммы будет отображен значок — Е.

Профиль сварки состоит из пары величин: амплитуды тока и длительности сварочного импульса. Для каждой диаграммы блок управления хранит девять профилей (под номерами от 1 до 9), плюс нулевой профиль, в котором сохраняются текущие значения тока/длительности импульса, если оператор изменял их значения регуляторами.

Под верхней строкой расположены два индикатора: правый отображает текущую амплитуду сварочного тока, а левый – длительность сварочного импульса. Вращением левого или правого регулятора можно изменять значения соответствующего параметра.

Через три секунды после завершения изменений прозвучит короткий сигнал, после чего новые значения будут переданы в силовой модуль, а также записаны в нулевой профиль для данной диаграммы, затем этот профиль будет выбран в качестве текущего. От начала

изменения тока или длительности и до завершающего сигнала сварочные циклы устройством не производятся.

Шкала длительности импульса имеет зеленый цвет, но для импульсов некоторых форм может иметь место минимально допустимая длительность, в этом случае в начальном участке шкалы длительности появится сектор красного цвета, значения из которого будут недоступны для установки. Силовой модуль имеет три диапазона рабочих токов: малый – до 30А, средний – 30...100А и большой – 100...300А, соответственно шкала индикатора тока имеет три цветовых сектора: зеленый для малого диапазона, желтый для среднего и оранжевый для большого.

Для управления режимами устройства используется система списков и меню для перехода к которым используются нажатия на регуляторы. Регуляторы имеют два варианта нажатия — короткое и длинное: для короткого нажатия регулятор нажимают на время менее одной секунды и отпускают, для длинного регулятор нажимают и удерживают в нажатом состоянии более одной секунды, а затем отпускают. После чего вращением регулятора выбирают пункты списка или меню (или меняют значения параметра). Под каждым регулятором отображаются подсказки, поясняющие, какое действие будет производится при нажатии \oint данного регулятора, эти подсказки меняются в зависимости от режима работы устройства.

При включении питания устройство загружает диаграмму и профиль сварки, которые были текущими на момент выключения питания.

2.3.2.1 Выбор диаграммы и изменение ее параметров

Каждая диаграмма имеет название и характеризуется рядом параметров, таких как форма сварочного импульса, параметры импульса предварительного разогрева и параметры ВЧ-возбуждения. Устройство способен формировать сварочные импульсы трех форм – прямоугольной, треугольной и трапециевидной:

где Ic — амплитуда импульса сварочного тока, а Tc — его длительность.

Перед сварочным импульсом может быть добавлен импульс предварительного нагрева. Этот импульс формируются до поднятия электрода перед сварочным импульсом и

предназначен для предварительного разогрева электрода и свариваемых деталей:

Амплитуда Іп и длительность Тп импульса предварительного нагрева задается в параметрах диаграммы и может быть изменена пользователем.

Кроме того на сварочный импульс может быть наложено ВЧ-возбуждение, которое способствует концентрации энергии и облегчает работу с трудносвариваемыми металлами и сплавами. Устройство имеет два режима наложения ВЧ-возбуждения:

• Режим 0 — ВЧ-колебания суммируются со сварочным током;

 Режим 1 — значение тока переключается между током сварки и током ВЧвозбуждения с частотой ВЧ-возбуждения

Все параметры ВЧ-возбуждения задаются в параметрах диаграммы и могут быть изменены пользователем, амплитуда ВЧ-колебаний может задаваться в диапазоне от 0 до 100% (от амплитуды сварочного тока), а частота — от 0.5 до 10 кГц.

В списке диаграмм имена формируются на основе выбранных параметров — корень имени отражает форму сварочного импульса — «Прям», «Тре» и «Трап» соответственно для прямоугольного, треугольного и трапецевидного импульсов, импульс предварительного нагрева отображается в имени префиксом «^» (например, «^Прям»), а наличие ВЧвозбуждения добавляет к имени суффикс «""» (например, «Трап""»). Текущая выбранная диаграмма отображается в левой части верхней строки ЖК-дисплея в графическом виде, отражающем ее основные свойства.

Для каких-либо действий с диаграммами необходимо нажать на левый регулятор, в результате чего на ЖК-дисплей будет выведен список диаграмм, после чего вращением левого регулятора выбрать в появившемся списке требуемую диаграмму, а вращением правого регулятора — требуемое действие. По умолчанию предлагается действие «Загрузить», доступен также вариант «Изменить».

Если выбрано действие «Загрузить», то при нажатии левого регулятора выбранная диаграмма становится текущей, в устройство загружаются заданные в ней параметры, а также последний использовавшийся с этой диаграммой профиль. Если выбрано действие «Изменить», то при нажатии левого регулятора будет выведен список параметров диаграммы:

💉 🖊 "Г"і 45в	1:27А/10мс
ВЧ ампл.: 20% ВЧ реж.: 0 ВЧ част.: Вр. подогр: 1.0мс Ток подогр: 30А Ток заж.: 20А Имя: ^Прям''''	150 200 50 250 300 27A
Указатель	ПЗменить
🕁 Выбор	🕁 Выход

Параметры имеют следующий смысл:

- «ВЧ ампл.» амплитуда тока ВЧ-модуляции;
- «ВЧ реж.» режим ВЧ-модуляции;
- «ВЧ част.» частота ВЧ-модуляции:
- «Время подогр.» длительность импульса предварительного нагрева;
- «Ток подогр.» ток импульса предварительного нагрева;
- «Ток заж.» ток зажигания дуги.
- «Имя» индикация имени изменяемой диаграммы (не редактируется);

Вращением левого регулятора выбирают требуемый параметр и нажатием на левый регулятор переходят к его изменению:

💉 🖊 "т 45в	1:27А/10мс
ВЧ ампл.: 20% ВЧ реж.: 0 ВЧ част.: Вр. подогр: 1.0мс Ток подогр: 30А Ток заж.: 20А Имя: ^Прям'''	150 200 50 250 300 27A
🕼 Указатель	ПЗменить
🕁 Выбор	🕁 Выход

В режиме изменения значения параметра вращением левого регулятора против часовой стрелки уменьшают параметр, а вращением по часовой стрелке увеличивают. Нажатием на левый регулятор сохраняют новое значение параметра и выходят из режима изменения. Нажатием на правый регулятор отменяют изменения и выходят из режима изменения параметра сохраняя его предыдущее значение. Для выхода из списка параметров нажимают правый регулятор, для выхода из списка диаграмм также нажимают правый регулятор.

2.3.2.2 Загрузка, изменение и удаление профилей

Параметры текущего профиля отображаются в правой половине верхней строки ЖКдисплея. Если текущим является один из сохраненных профилей, то перед параметрами отображается его номер. Для каких-либо действий над профилями необходимо нажать на правый регулятор, в результате чего на ЖК-дисплей будет выведен список профилей для данной диаграммы, затем вращением правого регулятора выбрать в появившемся списке требуемый профиль, а вращением левого регулятора — требуемое действие. По умолчанию предлагается действие «Загрузить», доступны также варианты «Сохранить» и «Удалить».

Если выбрано действие «Загрузить», то при нажатии правого регулятора выбранный профиль становится текущим, его параметры устанавливаются на индикаторах тока и длительности и используются при формировании сварочного импульса. Если выбрано действие «Сохранить», то при нажатии правого регулятора текущие значения индикаторов тока и длительности импульса сохраняются в выбранном профиле, заменяя его прежние значения и данный профиль становится текущим. Если выбрано действие «Удалить», то при нажатии правого регулятора выбранный профиль очищается и отображается в списке как пустой. Имя профиля формируется из выбранных значений тока и длительности импульса сварки. Для выхода из списка профилей нажимают левый регулятор.

2.3.2.3 Тестовые режимы

Тестовые режимы предназначены для проверки работоспособности отдельных узлов устройства, а также для некоторых настроек. Для доступа к настройкам используют длинное

нажатие на правый регулятор, после отпускания которого на ЖК-дисплей будет выведено меню со списком тестов. Вращением правого регулятора выбирают нужный тест из меню, а нажатием на правый регулятор переходят к выполнению.

- Тест Маски проверка работоспособности защитного светофильтра. На ЖК-дисплее будет отображаться окно «Тест Маски» с табличками «Вкл» и «Выкл», переключаясь между которыми вращением в соответствующую сторону правого регулятора можно включать и выключать затемнение защитного светофильтра для проверки его работоспособности. Завершают тест нажатием на правый регулятор.
- Тест Газа проверка работоспособности газового клапана в блоке управления и настройка требуемого расхода газа. На ЖК-дисплее будет отображаться окно «Тест газового клапана» с табличками «Вкл» и «Выкл», переключаясь между которыми вращением в соответствующую сторону правого регулятора можно включать и выключать газовый клапан для проверки его работоспособности либо для установки на редукторе газового баллона требуемого расхода инертного газа во время сварки. Завершают тест нажатием на правый регулятор.

• Тест Магнита – проверка работоспособности электромагнита отвода сварочного электрода. На ЖК-дисплее будет отображаться окно «Тест электромагнита» с табличками «Вкл» и «Выкл», вращая в любую сторону правый регулятор можно подать тестовый импульс (длительностью около одной секунды) на электромагнит для проверки его работоспособности. Завершают тест нажатием на правый регулятор.

2.3.2.4 Конфигурация

Под конфигурацией устройства понимается набор специальных параметров, задающих специфические характеристики процесса сварки, а также действия, направленные на возврат

устройства к исходным (заводским) значениям настроек в том случае, если предыдущими действиями было нарушено нормальное функционирование устройства. Данные параметры определяют правильное функционирование всех узлов устройства и их изменение без понимания принципов работы и взаимодействия элементов устройства может нарушить нормальное функционирование как всего устройства, так и отдельных его частей. Меню конфигурации вызывается длительным нажатием левого регулятора, в нем имеются пункты «Настройки» и «Сброс».

При выборе пункта «Настройки» будет выведен список из трех пунктов:

- Т опр.кас время проверки касания электрода;
- Т паузы минимальная пауза между циклами;
- Т газ.посл длительность подачи газа после завершения сварочного цикла; При выборе режима «Сброс» будет выведен список из четырех пунктов: «Настройки»,

«Импульсы», «Диаграммы», «Профили», «Все». Выбор любого пункта кроме последнего приведет к возврату соответствующих настроек/параметров к заводским значениям, выбор последнего пункта («Все») приведет к полному возврату параметров устройства к заводским значениям.

2.3.2.5 Подготовка сварочного электрода

Сварка производится вольфрамовым электродом диаметром 1 мм, который зажимается в сварочном инструменте с помощью цангового зажима. Чтобы вынуть электрод из сварочного инструмента необходимо сначала снять конический наконечник, потянув за него, затем слегка ослабить зажимную гайку, после чего вынуть электрод. Для закрепления электрода в сварочном инструменте его вставляют в отверстие зажимной гайки, так чтобы выступающая часть составила 20 ... 25 мм, затем без применения инструментов («от руки») затягивают зажимную гайку цангового зажима.

Электрод должен быть соответствующим образом заточен:

Рис 1. Форма заточки вольфрамового электрода

Длина заточенной части должна составлять около 3мм (угол заточки 15 - 20°), заточка должна производиться таким образом, чтобы риски от абразивного инструмента были направлены вдоль электрода.

Рекомендуется применять сварочные электроды марки WL-20 (с синей маркировкой) с добавлением оксида лантана, так как они обеспечивают легкое зажигание дуги, меньше подвержены износу и выдерживают больший сварочный ток.

2.3.2.6 Выполнение сварки

2.3.2.6.1 Микродуговая сварка

Включите питание устройства клавишей на передней панели блока управления. Откройте вентиль газового баллона и при необходимости установите на редукторе требуемый расход инертного газа, используя режим «Тест газа» как описано в разделе «Тестовые режимы» данного руководства. Проверьте состояние сварочного электрода и при необходимости заточите его как описано в разделе «Подготовка сварочного электрода». Переведите переключатель «ИНСТРУМЕНТ» в верхнее положение. Выберите необходимую диаграмму сварки, затем выберите нужный сварочный профиль или задайте требуемые параметры сварки регуляторами тока и длительности импульса. Нажатием кнопки «ЗАПУСК» выберите требуемый тип запуска.

Отрегулируйте положение микроскопа, расстояние между окулярами и фокусировку таким образом, чтобы сварочный электрод был четко виден. Подключите к свариваемой детали провод с зажимом («массу») от блока управления. Наблюдая в микроскоп место сварки, подведите требуемую точку детали к концу сварочного электрода и без усилия коснитесь деталью электрода. Если выбран тип запуска «по касанию электрода», то определив момент касания, блок управления подаст звуковой сигнал, затемнит защитный светофильтр и включит подачу инертного газа. Через 0.5 с (если контакт детали с электродом не прервался) включится подача на сварочный электрод заданного тока, а электромагнит сварочного инструмента отведет электрод от детали на 0.8 ... 1.2мм, в результате чего между деталью и электродом возникнет кратковременный дуговой разряд. По завершении разряда блок управления выключит затемнение защитного светофильтра и вернет электрод в исходное положение. Для нового сварочного цикла необходимо отвести деталь от электрода и снова коснуться его. Если выбран запуск от педали, то после касания деталью электрода нажмите на педаль, после чего будет выполнен описанный выше сварочный цикл. Если через указанное в настройках время не начался новый цикл сварки, то будет выключена подача инертного газа.

2.3.2.6.2 Контактная сварка

Переведите переключатель «ИНСТРУМЕНТ» в нижнее положение. Выберите нужный сварочный профиль или задайте требуемые параметры сварки регуляторами тока и

20

длительности импульса. Подключите к свариваемой детали провод с зажимом («массу») от блока управления. Прижмите электрод инструмента контактной сварки к требуемой точке детали и нажмите на педаль — устройство подаст звуковой сигнал, после которого будет выполнен цикл контактной сварки.

2.4 Техническое обслуживание и ремонт

2.4.1 Внешний осмотр. При внешнем осмотре убедиться в отсутствии повреждений корпуса, разъемов, шнура питания и соединительных кабелей и шлангов. Произвести очистку блока управления и сварочного инструмента от пыли и грязи.

2.4.2 Перечень неисправностей и характерных способов устранения приведены в Таблице 4.

Проявление неисправности	Вероятная причина	Методы устранения
Установка не включается	Нет напряжения сети 220 В. Перегорел предохранитель	Проверить наличие сетевого напряжения в питающей сети Заменить предохранитель 15А на задней стенке блока управления.
2.4.2 Deferre He		

2.4.3 Работы по текущему ремонту устройства проводятся на предприятии изготовителе.

III. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

3.1 Устройство в транспортной таре может транспортироваться на любое расстояние любым видом транспорта, обеспечивающим предохранение изделия и упаковки от механических повреждений и воздействия атмосферных осадков.

3.2 Размещение и крепление транспортной тары с упакованным устройством в транспортных средствах должно обеспечивать её устойчивое положение и не допускать перемещения во время транспортирования.

3.3 Условия транспортирования — по группе Ж2 ГОСТ 15150- при температуре не ниже -50 ℃.

3.4 После транспортирования при отрицательных температурах устройство должно быть выдержано в нормальных климатических условиях в транспортной таре не менее 12 ч.

IV. ГАРАНТИИ ИЗГОТОВИТЕЛЯ.

Изготовитель гарантирует соответствие устройства требованиям действующей технической документации при соблюдении потребителем условий транспортирования, хранения и эксплуатации.

21

Гарантийный срок эксплуатации - 12 месяцев с даты продажи или с даты изготовления (при отсутствии отметки о дате продажи).

Гарантийный срок хранения — 12 месяцев с даты изготовления.

V. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Устройство микродуговой сварки «Магистр-УМД-02-250» заводской №

изготовлен и принят в соответствии с действующей технической документацией и признан годным к эксплуатации.

Начальник ОТК				
должность	личная подпись	расшифровка подписи	дата	
М.П.				

VI. ДАННЫЕ ОБ ИЗГОТОВИТЕЛЕ

ООО НТЦ "Магистр-С" Россия, 410033, г. Саратов, ул. Панфилова, 1 Факс: (845-2) 45-95-44 Тел.: (845-2) 45-95-44 E-mail: <u>magistrsar@mail.ru</u> www.magistr.su Внимание! Если по каким-либо причинам нормальное функционирование устройства нарушено, то имеется возможность вернуть к заводским значениям отдельную группу параметров либо все параметры одновременно. Эта процедура описана в разделе 2.3.2.4

Внимание! Для обеспечения качественной сварки при максимальном токе (энергии) напряжение на конденсаторах перед очередным импульсом должно быть не менее 53 В (отображается на верхней строке дисплея).