12V 350W 1 Phase / PMT-12V350W1A #### **Highlights & Features** - AC input voltage range selectable by switch - Full corrosion resistant aluminium casing - Built-in automatic fan speed control circuit - MTBF > 700,000 hrs as per Telcordia SR-332 - Short Circuit / Overvoltage / Overload / Over Temperature **Protections** #### **Safety Standards** CB Certified for worldwide use **Model Number: Unit Weight: Dimensions (L x W x D):** 215 x 115 x 50 mm PMT-12V350W1A□ 0.82 kg (1.81 lb) (8.46 x 4.53 x 1.97 inch) #### **General Description** The PMT-12V350W1A□ offers a nominal output voltage of 12V with a wide operating temperature range from -10°C to +70°C and can withstand shock and vibration according to IEC 60068-2. In addition to features like overvoltage and overload protections, Delta's PMT series of panel mount power supplies can meet the price demand of cost competitive markets without compromising the quality of the components and product specifications. The series of products has an expected life time of 10 years and will have no output power derating from 100Vac to 132Vac & 200Vac to 264Vac. #### **Model Information** #### PMT Panel Mount Power Supply | Model Number | Input Voltage Range | Rated Output Voltage | Rated Output Current | |----------------|---|----------------------|----------------------| | PMT-12V350W1A□ | 90-132Vac, 180-264Vac
(Selectable by Switch) | 12Vdc | 29.0A | #### **Model Numbering** | PM | T - | 12V | 350W | 1 | Α | | |-------------|---------------------------|----------------|-------------|--------------|--------|---| | Panel Mount | Product Type T – Enclosed | Output Voltage | 350W series | Single Phase | No PFC | Connector Type R – Terminal Block K – Front Face* | *Options # 12V 350W 1 Phase / PMT-12V350W1A ### **Specifications** #### Input Ratings / Characteristics | Nominal Input Voltage | 100-120Vac, 200-240Vac (Selectable by Switch) | |---------------------------------|---| | Input Voltage Range | 90-132Vac, 180-264Vac (Selectable by Switch) | | Nominal Input Frequency | 50-60Hz | | Input Frequency Range | 47-63Hz | | Input Current | 7.00A typ. @ 115Vac, 4.00A typ. @ 230Vac | | Efficiency at 100% Load | 84.0% typ.@ 230Vac | | Max Inrush Current (Cold Start) | < 50A @ 115Vac, < 60A @ 230Vac | | Leakage Current | < 3.5mA @ 240Vac | ### Output Ratings / Characteristics* | Nominal Output Voltage | 12Vdc | |---|--| | Factory Set Point Tolerance | 12Vdc ± 1.5% | | Output Voltage Adjustment Range | 10.8-13.2Vdc | | Output Current | 29A (348W max.) | | Output Power | 348W | | Line Regulation | ± 0.5% typ. | | Load Regulation | ± 1% typ. | | PARD** (20MHz) | < 150mVpp | | Rise Time | < 50ms @ nominal input (100% load) | | Start-up Time | < 1000ms @ nominal input (100% load) | | Hold-up Time | 12ms typ. @ 115Vac, 16ms typ. @ 230Vac (100% load) | | Dynamic Response (Overshoot & Undershoot O/P Voltage) | ± 5%, 10-50% load and 50-100% load | | | (Slew Rate: 0.1A/µS) | | Start-up with Capacitive Loads | 8,000µF Max | ^{**}For power de-rating from 50°C to 70°C, see power de-rating on page 3. #### Mechanical | Case Cover / Chassis | | Aluminum / SGCC | |-----------------------------------|------------------------|---| | Dimensions (L x W x D) | | 215 x 115 x 50 mm (8.46 x 4.53 x 1.97 inch) | | Unit Weight | | 0.82 kg (1.81 lb) | | Indicator | | Green LED (DC OK) | | Cooling System | | Forced Cooling | | Terminal | PMT-12V350W1A <u>K</u> | M3.5 x 9 Pins (Rated 300V/20A) | | | PMT-12V350W1A <u>R</u> | M3.5 x 9 Pins (Rated 300V/15A) | | Wire | | AWG 16-12 | | Noise (1 Meter from power supply) | | Sound Pressure Level (SPL) < 52dBA | ^{**}PARD is measured with an AC coupling mode, 5cm wires, and in parallel with 0.1µF ceramic capacitor & 47µF electrolytic capacitor. # 12V 350W 1 Phase / PMT-12V350W1A #### Environment | Surrounding Air Temperature | Operating | -10°C to +70°C | |-----------------------------|---------------|---| | | Storage | -25°C to +85°C | | Power De-rating | | > 50°C de-rate power by 2.5% / °C
< 100Vac de-rate power by 3% / V
< 200Vac de-rate power by 3% / V | | Operating Humidity | | 5 to 95% RH (Non-Condensing) | | Operating Altitude | | 0 to 5,000 Meters (16,400 ft.) | | Shock Test | Non-Operating | IEC 60068-2-27, Half Sine: 50G for a duration of 11ms, 3 times per direction, 18 times in total | | Vibration | Operating | IEC 60068-2-6, Sine Wave: 10Hz to 150Hz @ 25m/S² (2.5G peak); 90 min per axis for all X, Y, Z direction | | | Non-Operating | IEC 60068-2-6, Random: 5Hz to 500Hz @ 2.09Grms peak; 20 min per axis for all X, Y, Z direction | | Over Voltage Category | | II | | Pollution Degree | | 2 | #### **Protections** | Overvoltage | 13.8-16.2V, SELV Output, Latch Mode | |--------------------------|--| | Overload / Overcurrent | 105%-150% of rated load current, Hiccup Mode, Non-Latching (Auto-Recovery) | | Over Temperature | Hiccup Mode, Non-Latching (Auto-Recovery when the fault is removed) | | Short Circuit | Hiccup Mode, Non-Latching (Auto-Recovery when the fault is removed) | | Internal Fuse at L pin | T10AH | | Protection Against Shock | Class I with PE* connection | ^{*}PE: Primary Earth ### Reliability Data | | > 700,000 hrs as per Telcordia SR-332
I/P: 100Vac, O/P: 100% load, Ta: 35°C | |------------------------|--| | Expected Cap Life Time | 10 years (115Vac , 50% load @ 40°C) | # 12V 350W 1 Phase / PMT-12V350W1A #### Safety Standards / Directives | Safety Entry Low Voltage | | SELV (EN 60950-1) | |--------------------------|--|--| | Electrical Safety | TUV Bauart UL/cUL recognized CB scheme | EN 60950-1
UL 60950-1 and CSA C22.2 No. 60950-1 (File No. E131881)
IEC 60950-1 | | CE | OB Solicine | In conformance with EMC Directive 2014/30/EU and Low Voltage Directive 2014/35/EU | | Material and Parts | | RoHS Directive 2011/65/EU Compliant | | Galvanic Isolation | Input to Output | 3.0KVac | | | Input to Ground | 1.5KVac | | | Output to Ground | 0.5KVac | #### **EMC** | Emissions (CE & RE) | | CISPR 32, EN 55032, EN 55011, FCC Title 47: Class B | |--------------------------------------|----------------|--| | Immunity | | EN 55024 | | Electrostatic Discharge | IEC 61000-4-2 | Level 4 Criteria A ¹⁾ Air Discharge: 15kV Contact Discharge: 8kV | | Radiated Field | IEC 61000-4-3 | Level 3 Criteria A ¹⁾ 80MHz-1GHz, 10V/M with 1kHz tone / 80% modulation | | Electrical Fast Transient / Burst | IEC 61000-4-4 | Level 3 Criteria A ¹⁾ 2kV | | Surge | IEC 61000-4-5 | Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2kV Differential Mode ³⁾ : 1kV | | Conducted | IEC 61000-4-6 | Level 3 Criteria A ¹⁾
150kHz-80MHz, 10Vrms | | Power Frequency Magnetic Fields | IEC 61000-4-8 | Criteria A ¹⁾ 10A/Meter | | Voltage Dips and Interruptions | IEC 61000-4-11 | 100% dip; 1 cycle (20ms); Self Recoverable | | Low Energy Pulse Test (Ring
Wave) | IEC 61000-4-12 | Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2kV Differential Mode ³⁾ : 1kV | | Harmonic Current Emission | | NA | | Voltage Fluctuation and Flicker* | | IEC/EN 61000-3-3 | ^{*}Fulfills tested conditions ¹⁾ Criteria A: Normal performance within the specification limits ²⁾ Asymmetrical: Common mode (Line to earth) 3) Symmetrical: Differential mode (Line to line) ### 12V 350W 1 Phase / PMT-12V350W1A #### **Device Description** - 1) Input & Output terminal block connector - DC voltage adjustment potentiometer - 3) DC OK control LED (Green) - 4) AC selectable switch ### 12V 350W 1 Phase / PMT-12V350W1A #### **Dimensions** PMT-12V350W1AR: Terminal Block **L x W x D:** 215 x 115 x 50 mm (8.46 x 4.53 x 1.97 inch) ### 12V 350W 1 Phase / PMT-12V350W1A PMT-12V350W1AK: Front Face L x W x D: 215 x 115 x 50 mm (8.46 x 4.53 x 1.97 inch) ### 12V 350W 1 Phase / PMT-12V350W1A #### **Engineering Data** #### Output Load De-rating VS Surrounding Air Temperature Fig. 1 De-rating for Vertical and Horizontal Mounting Orientation > 50°C de-rate power by 2.5% / °C #### Note - Power supply components may degrade, or be damaged, when the power supply is continuously used outside the shaded region, refer to the graph shown in Fig. 1. - 2. If the output capacity is not reduced when the surrounding air temperature exceeds its specification as defined on Page 3 under "Environment", the device will run into Over Temperature Protection. When activated, the output voltage will go into bouncing mode and will recover when the surrounding air temperature is lowered or the load is reduced as far as necessary to keep the device in working condition. - In order for the device to function in the manner intended, it is also necessary to keep a safety distance of ≥ 20mm (0.79 inch) with adjacent units while the device is in operation. - 4. Depending on the surrounding air temperature and output load delivered by the power supply, the device housing can be very hot! - If the device has to be mounted in any other orientation, please contact info@deltapsu.com for more details. #### Output Load De-rating VS Input Voltage No output power de-rating for the input voltage from 100Vac to 132Vac & 200Vac to 264Vac ### 12V 350W 1 Phase / PMT-12V350W1A #### **Assembly & Installation** - Side Mounting: Fig. 2 and Fig. 3 show the mounting hole locations for power supply assembly onto a metal mounting surface. The power supply shall be mounted on minimum of 4 mounting holes using M4 screw maximum <u>5mm</u> (0.19 inch) length (Refer to Fig. 4). This is to maintain a safety distance between the screw and internal components. - Base Mounting: Fig. 2 and Fig. 3 show the mounting hole locations for power supply assembly onto a metal mounting surface. The power supply shall be mounted on minimum of 4 mounting holes using M4 screw maximum 4mm (0.15 inch) length (Refer to Fig. 4). - © Connector - This surface belongs to customer's end system or panel where the power supply is mounted. - Use flexible cable (stranded or solid) of AWG No. 20-12. The input/output connectors' allowable current is 23A max per pin. User should calculate and select the suitable wire specification (type/quantity/diameter) according to actual output current. The torque at the connector shall not exceed 13Kgf.cm (11.28 lb.in). The insulation stripping length should not exceed 0.275" or 7mm. - Recommended mounting torque of the product and its mounting accessories is 9~12Kgf.cm (7.81~10.41 lbf.in). Fig. 3 Mounting Hole Locations and the Safety Distance Ensure the mounted device is kept at \geq 4mm (0.15 inch) safety distance at all sides from other components and equipment. In addition, to ensure sufficient convection cooling, always maintain a distance of \geq 20mm (0.79 inch) from fan ventilated surfaces while the device is in operation. Please insert an insulation sheet between the system and product, if the safety distance is \leq 4mm (0.15 inch). - Only use M4 screw ≤ 5mm (0.19 inch) through the base mounting holes at (A). This is to keep a safe distance between the screw and internal components. - Only use M4 screw ≤ 4mm (0.15 inch) through the base mounting holes at B. This is to keep a safe distance between the screw and internal components. Fig. 4 Assembly Reference ### 12V 350W 1 Phase / PMT-12V350W1A #### Safety Instructions - Must select correct AC input voltage before turning on (Refer to the "Device Description" on Page 5). - If user's mounting orientation is not according to the recommended mounting orientations, please consult Delta for further information. - The device is not recommended to be placed on low thermal conductive surface. For example, plastics. - The enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Do not touch the device while it is in operation or immediately after power is turned OFF. Risk of burning! - Do not touch the terminals while power is being supplied. Risk of electric shock. - Prevent any foreign metal, particles or conductors from entering the device through the openings during installation. It may cause electric shock, safety hazard, fire and/or product failure. - Warning: When connecting the device, secure Earth connection before connecting L and N. When disconnecting the device, remove L and N connections before removing the Earth connection. The power supply must be mounted by metal screws onto a grounded metal surface. It is highly recommended that the Earth terminal on the connector be connected to the grounded metal surface. #### **Accessories** #### LM-01: Top Fixing Bracket This bracket is used to fix the power supply onto a flat surface from the top. ### 12V 350W 1 Phase / PMT-12V350W1A #### **Functions** #### Start-up Time The time required for the output voltage to reach 90% of its final steady state set value, after the input voltage is applied. #### Rise Time The time required for the output voltage to change from 10% to 90% of its final steady state set value. #### Hold-up Time Time between the collapse of the AC input voltage, and the output falling to 95% of its steady state set value. #### ■ Graph illustrating the Start-up Time, Rise Time, and Hold-up Time #### **Inrush Current** Inrush current is the peak, instantaneous, input current measured and, occurs when the input voltage is first applied. For AC input voltages, the maximum peak value of inrush current will occur during the first half cycle of the applied AC voltage. This peak value decreases exponentially during subsequent cycles of AC voltage. #### Dynamic Response The power supply output voltage will remain within 1200mVp-p of its steady state value, when subjected to a dynamic load from 10 to 50% and 50 to 100% of its rated current. #### ■ 50% duty cycle / 5Hz to 1KHz ### 12V 350W 1 Phase / PMT-12V350W1A #### Overload & Overcurrent Protections (Auto-Recovery) The power supply's Overload (OLP) and Overcurrent (OCP) Protections will be activated when output current is $105{\sim}150\%$ of I_0 (Max load). In such occurrence, the V_0 will start to droop and once the power supply has reached its maximum power limit, the protection is activated and the power supply will go into "Hiccup mode" (Auto-Recovery). The power supply will recover once the fault condition of the OLP and OCP is removed and I_0 is back within the specifications. It is not recommended to prolong the duration of I_0 when it is <105~150% but >100%, since it may cause damage to the PSU. #### Short Circuit Protection (Auto-Recovery) The power supply's output OLP/OCP function also provides protection against short circuits. When a short circuit is applied, the output current will operate in "Hiccup mode", as shown in the illustration in the OLP/OCP section on this page. The power supply will return to normal operation after the short circuit is removed. #### Overvoltage Protection (Latch Mode) The power supply's overvoltage circuit will be activated when its internal feedback circuit fails. The output voltage shall not exceed its specifications defined on Page 3 under "Protections". Power supply will latch, and require removal/re-application of input AC voltage in order to restart. The power supply should be latch. #### Over Temperature Protection (Auto-Recovery) As described in load de-rating section, the power supply also has Over Temperature Protection (OTP). In the event of a higher operating temperature at 100% load, the power supply will run into OTP when the operating temperature is beyond what is recommended in the de-rating graph. When activated, the output voltage will go into bouncing mode until the temperature drops to its normal operating temperature as recommended in the derating graph. #### **Others** #### **Delta RoHS Compliant** #### Restriction of the usage of hazardous substances The European directive 2011/65/EU limits the maximum impurity level of homogeneous materials such as lead, mercury, cadmium, chrome, polybrominated flame retardants PBB and PBDE for the use in electrical and electronic equipment. RoHS is the abbreviation for "Restriction of the use of certain hazardous substances in electrical and electronic equipment". This product conforms to this standard. #### Attention Delta provides all information in the datasheets on an "AS IS" basis and does not offer any kind of warranty through the information for using the product. In the event of any discrepancy between the information in the catalog and datasheets, the datasheets shall prevail (please refer to www.DeltaPSU.com for the latest datasheets information). Delta shall have no liability of indemnification for any claim or action arising from any error for the provided information in the datasheets. Customer shall take its responsibility for evaluation of using the product before placing an order with Delta. Delta reserves the right to make changes to the information described in the datasheets without notice.