

XL9040

4,096-Bit Serial Electrically Erasable PROM 2.7 to 5.5 Volt Operation

FEATURES

- 1 MHz Clock Rate (Typical)
- Extended Temperature Range: -40°C to +85°C
- Low Power Consumption — Active current 1.5 mA
 - Standby current 2μA
- 2.7 to 5.5 volt operation (both READ and WRITE)
- 4-Wire Bus Interface
- Hardware & Software Write Protection
 - Defaults to disabled state at power up
 - Software instructions for WRITE-enable/ disable
- Internally Organized as 256 x 16 bits
- Versatile, Easy-to-Use Interface
 - READY/BUSY status signal
 - Automatic write cycle time-out
- Advanced CMOS E²PROM Technology
- High Reliability
 - Endurance: 100,000 cycles per byte
 Data retention: 100 years
- 8-Pin PDIP or SOIC Packages

D0019 ILL A01.2

PIN NAMES

CS SK DI	Chip Select Serial Data Clock Serial Data Input
DO	Serial Data Output
GND	Ground
WC	Write Control
R/B	READY/BUSY Output
Vcc	Power Supply

OVERVIEW

The XL9040 is a cost effective 4,096-bit, nonvolatile, serial E²PROM designed to directly connect with serial interface. It is fabricated using EXEL's advanced CMOS E²PROM technology. The XL9040 provides external read/write memory arranged as 256 registers of 16 bits each. Four 8-bit instructions control the operation of the device, which include read, write, write enable and write disable. The READY/BUSY pin indicates the status of the

device when polled during the WRITE operation. The data output pin (DO) also indicates the status of the device during self-timed nonvolatile programming cycle. To protect against inadvertent writes, the WRITE instruction is accepted only while the chip is in the write enabled state. After the initiation of the write cycle, if Chip Select (\overline{CS}) is brought into LOW state, while \overline{SK} is low, the DO pin will indicate the READY/BUSY status of the chip.

BLOCK DIAGRAM

APPLICATIONS

The XL9040 is ideal for high volume applications requiring low power and low density data storage. It uses a costeffective, space saving 8-pin package, and readily interfaces with standard microprocessors and popular microcontrollers.

Candidate applications include alarm devices, air conditioners, TV's, VCRs, cameras, computer terminals, smart cards, electronic locks, meters, robotics and telephones, to name just a few.

ENDURANCE AND DATA RETENTION

The XL9040 is designed for applications requiring up to 100,000 write cycles per bit. It provides 100 years of secure data retention, with or without power applied.

DEVICE OPERATION

The XL9040 is a clocked serial port compatible E^2 PROM. It operates on a single power supply ranging from 2.7V to 5.5V and it has an on-chip voltage generator to provide the high voltage needed during a programming operation. Input data is latched on the rising edge of the clock(\overline{SK}), and data is output on the falling edge of the clock.

Data is grouped in 8-bit bytes. The beginning 8 bits specify the mode, the next 8 bits specify the address, and subsequent 16 bits specify the I/O data. Each instruction sent to the device includes a 4 bit start sequence, 1010, a 4 bit opcode and an 8 bit address field. For a WRITE operation,

a 16 bit data field is required following the 8 bit address field. The device requires an active LOW \overline{CS} in order to be selected. Each instruction must be preceded by a HIGH-to-LOW transition of \overline{CS} before the 4 bit start sequence is given. Prior to the 4 bit start sequence (1010), inputs of all other logical sequence are ignored.

During the self-timed internal programming cycle that accompanies a write, the \overline{SK} clock is de-activated. It is needed only when instructions or data are being passed to or from the memory.

Any of the four modes (read, write, write enable, write disable) may be specified. The write time is set by internal timer, and determination of whether a write operation is in progress or not can be made from the status of the READY/BUSY pin.

Read (READ)

The read instruction is the only instruction that outputs serial data on the DO pin. After the read instruction and address have been decoded, data is transferred from the selected memory register into the output register. The output on DO changes during the HIGH to LOW transition of SK.

Write (WRITE)

After a write instruction and its address have been decoded, the device expects 16 bits of data. These are to be transferred into the specific memory register which has previously been automatically erased. After the last data bit has been clocked into DI on the 32nd clock edge, the self-timed internal programming cycle is initiated. The write cycle status can be monitored by observing the

READY/BUSY pin. It will output the BUSY status (LOW) one t_{SV} after the rising edge of the 32nd clock (the last data bit) and will stay LOW until the WRITE cycle is complete. It will then output a HIGH status until the next WRITE cycle. \overline{CS} must be held HIGH for the minimum of t_{CS} before the next instruction is entered.

Another way to get READY/BUSY status is from the DO pin. During a WRITE cycle, asserting a LOW on the \overline{CS} pin will cause the DO pin to output the READY/BUSY status. It is necessary for \overline{SK} to be brought into a LOW state 500ns prior to \overline{CS} going LOW. Asserting a HIGH on \overline{CS} will put the DO pin in a high impedance state again. After the WRITE cycle is completed, the DO pin will output HIGH when the device is deselected. The first rising edge of the DI pin will reset DO back into the high impedance state.

Write Control (WC PIN)

The \overline{WC} pin provides hardware write control. When \overline{WC} pin is low, the chip is enabled to execute WRITE functions. When \overline{WC} pin is high, all WRITE functions are locked out. The device shows ready status on the R/ \overline{B} pin and on the DO pin, if \overline{CS} and \overline{SK} are low. In addition, if \overline{WC} pin changes state during the write cycle, the write operation will be aborted not guaranteeing the data. The \overline{WC} pin does not have any effect on the READ, EWEN and EWDS operations.

Write Enable/Disable

When the XL9040 is powered up, it comes up in the write disabled state. In order to be programmable, it must receive an enable instruction. The device remains programmable until a disable instruction is entered, or until it is powered down. The disable instruction provides protection against inadvertent writes. Read operation is not affected by this command.

Instruction	Start Bits	OP Code	Address Data	Input
READ	1010	1000	(A ₀ -A ₇) 0	
WRITE	1010	0100	(A ₀ -A ₇) 0	D0-D15
Erase/Write Enable (EWEN)	1010	0011	xxxxxxx	
Erase/Write Disable (EWDS)	1010	0000	XXXXXXXX	

INSTRUCTION SET

D0019 PGM T01.1

ABSOLUTE MAXIMUM RATINGS

Temperature under bias	40°C to +85°C
Storage Temperature	
Lead Soldering Temperature (less than 10 seconds)	
Supply Voltage	
Voltage on Any Pin	0.3 to Vcc +0.3V
ESD Rating	
NOTE: These are STRESS ratings only. Appropriate conditions for operating these devices are given elsewhere	ere in this specification. Stresses
beyond those listed here may permanently damage the part. Prolonged exposure to maximum ratings may affe	ect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 2.7$ to 5.5 Volts

	Parameter	Conditions	V _{CC} = 3.0V±10%		V _{CC} = 5.0V±10%		
Symbol			Min.	Max.	Min.	Max.	Units
ICC1	Operating Current	$\overline{\text{CS}} = \text{V}_{\text{CC}}$, $\overline{\text{SK}} = 1\text{MHz}$		1.5		3	mA
ICC2	Operating Current	$\overline{\text{CS}} = \text{V}_{\text{IH}}$, $\overline{\text{SK}} = 1\text{MHz}$		0.5		1	mA
I _{SB}	Standby Current	$\overline{\text{CS}} = \text{DI} = \overline{\text{SK}} = 0\text{V}$		2		3	μA
ILI	Input Leakage Current	$V_{IN} = 0V$ to V_{CC} (\overline{CS} , \overline{SK} , DI)	-1	1	-1	1	μA
ILO	Output Leakage Current	$V_{OUT} = 0V$ to V_{CC} , $\overline{CS} = 0V$	-1	1	-1	1	μΑ
VIL1	Input Low Voltage	DI Pin		0.3xVcc		0.3xVcc	V
VIH1	Input High Voltage	DI Pin	0.7xV _{CC}		0.7xVcc		V
VIL2	Input Low Voltage	CS, SK, WC Pin		0.2xV _{CC}		0.2xV _{CC}	V
VIH2	Input High Voltage	CS, SK, WC Pin	0.8xVcc		0.8xVcc		V
VOL1	Output Low Voltage	I _{OL} = 2.1 mA TTL			0	0.4	V
VOH1	Output High Voltage	I _{OH} = -400 μA TTL			2.4	Vcc	V
VOL2	Output Low Voltage	I _{OL} = 10 μA CMOS		0.2		0.2	V
VOH1	Output High Voltage	I _{OH} = -10 μA CMOS	Vcc-0.2		V _{CC} -0.2		V

AC ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 2.7$ to 5.5 Volts

	Parameter	Conditions	V _{CC} = 3.0V±10%		V _{CC} = 5.0V±10%		11-24-
Symbol			Min.	Max.	Min.	Max.	Units
fsк	SK Clock Frequency			1		1	MHz
tsĸн	SK HIGH Time		650		500		ns
tsĸL	SK LOW Time		650		500		ns
tcs	Minimum CS HIGH Time		1000		1000		ns
tcss	CS Setup Time	Relative to SK	200		200		ns
tDIS	DI Setup Time	Relative to SK	150		150		ns
tCSH	CS Hold Time	Relative to SK	0		0		ns
tDIH	DI Hold Time	Relative to SK	150		150		ns
tPD1	Output Delay to "1"	AC Test		500		350	ns
tPD0	Output Delay to "0"	AC Test		500		350	ns
tsv	CS to Status Valid	AC Test		1000		1000	ns
tон	CS to DO in 3-state	CS Hi to DO Hi-z	0	400	0	400	ns
te/w	Write Cycle Time			15		10	ms
twcs	Write Control Setup Time	Relative to CS	0		0		ns
twch	Write Control Hold TIme	Relative to CS	0		0		ns

D0019 PGM T02.1

CAPACITANCE

 $T_A = 25^{\circ}C$, f = 1MHz

Symbol	Parameter	Parameter Max	
Cin	Input Capacitance	5	pF
Соит	Output Capacitance	5	pF

D0019 PGM T04.1

XL9040

PACKAGE DIAGRAMS

* See cover page for pinout options.

ORDERING INFORMATION Standard Configurations

Prefix	Part Type	Package Type
XL	9040	P, F

D0019 PGM T05.1

Part Numbers:

MARKING INFORMATION

TAPE AND REEL (EMBOSSED) INFORMATION

Surface mount devices, which are normally shipped in antistatic plastic tubes, are also available mounted on embossed tape for customers using automatic placement systems. The following diagram provides general information regarding the direction of the IC's. Tape "E2" shall be designated with PIN 1 at the trail direction.

NOTES:

NOTICE

EXEL Microelectronics, Inc. reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXEL Microelectronics, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, EXEL Microelectronics, Inc. shall not be liable for any damages arising as a result of any error or omission.

EXEL Microelectronics, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXEL Microelectronics, Inc. receives written assurances, to its satisfaction, that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; and (c) potential liability of EXEL Microelectronics, Inc. is adequately protected under the circumstances.

© Copyright 1996 EXEL Microelectronics, Inc.

Reproduction in whole or in part, without the prior written consent of EXEL Microelectronics, Inc. is prohibited.