General purpose transistor (dual transistors) UMX1N / IMX1

Features

- Two 2SC2412K chips in a UMT or SMT package.
- Mounting possible with UMT3 or SMT3 automatic mounting machines.
- 3) Transistor elements are independent, eliminating interference.
- 4) Mounting cost and area can be cut in half.

Structure

Epitaxial planar type NPN silicon transistor

The following characteristics apply to both Tr₁ and Tr₂.

External dimensions (Units: mm)

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Collector-base voltage		Vсво	60	V	
Collector-emitter voltage		VCEO	50	V	
Emitter-base voltage		VEBO	7	V	
Collector current		lc	150	mA	
Power dissipation	UMX1N	Pd	150(TOTAL)	*1 mW	
	IMX1	Pu	300 (TOTAL)	*2	
Junction temperature		Tj	150	င	
Storage temperature		Tstg	-55~+150	Ç	

*1 120mW per element must not be exceeded.

*2 200mW per element must not be exceeded.

Transistors UMX1N/IMX1

●Electrical characteristics (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Collector-base breakdown voltage	ВУсво	60	_	_	٧	Ic=50 μA	
Collector-emitter breakdown voltage	BVceo	50	_	_	٧	Ic=1mA	
Emitter-base breakdown voltage	ВУево	7	_	_	٧	I _E =50 μ A	
Collector cutoff current	Ісво	_	_	0.1	μΑ	V _{CB} =60V	
Emitter cutoff current	Ієво	_	_	0.1	μΑ	V _{EB} =7V	
Collector-emitter saturation voltage	VCE(sat)	_	_	0.4	٧	Ic/I _B =50mA/5mA	
DC current transfer ratio	hre	120	_	560	_	VcE=6V, lc=1mA	
Transition frequency	fτ	_	180	_	MHz	VcE=12V, IE=-2mA, f=100MHz	
Output capacitance	Cob	_	2	3.5	рF	V _{CB} =12V, I _E =0A, f=1MHz	

Packaging specifications

	Packaging type	Taping	
	Code	TN	T110
Part No.	Basic ordering unit (pieces)	3000	3000
UMX1N		0	_
IMX1		_	0

Electrical characteristic curves

Fig.1 Grounded emitter propagation characteristics

Fig.2 Grounded emitter output

Fig.3 Grounded emitter output characteristics (II)

Transistors UMX1N / IMX1

Fig.4 DC current gain vs. collector current (I)

Fig.5 DC current gain vs. collector current (II)

Fig.6 Collector-emitter saturation voltage vs. collector current

Fig.7 Collector-emitter saturation voltage vs. collector current (I)

Fig.8 Collector-emitter saturation voltage vs. collector current (I)

Fig.9 Collector-emitter saturation voltage vs. collector current (Ⅲ)

Fig.10 Gain bandwidth product vs. emitter current

Fig.11 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage

Fig.12 Base-collector time constant vs. emitter current