Single Wire CAN-Transceiver

Preliminary Data

Features

- Single wire Transceiver up to 40 kbit/s
- Ambient operation range 40 °C to 125 °C
- Supply voltage operation range 5.5 V to 28 V
- Very low current consumption in sleep mode
- CAN-Bus, Load and V_{batt} pins 4 kV ESD protected
- Short circuit and overtemperature protected
- Input bilevel feature for controller wake-up
- Output bilevel feature for wake up call
- Loss of Ground protection
- Bus dominant timeout feature
- Programmable bus out slewrate
- Under- and over-voltage-lockout

Гуре	Ordering Code	Package				
High speed mode up to 100 Kbit/s						

	Туре	Ordering Code	Package		
,	TLE 6255 G	Q67006-A9352	P-DSO-14-4 (SMD)		

New type

Functional Description

The TLE 6255 G is a special featured low speed Single-Wire-Bus Transceiver.

The device is designed primarily for use in single wire CAN systems operating with various CSMA/CR (carrier sense multiple access/collision resolution) protocols such as the BOSCH Controler Area Network (CAN) version 2.0.

The normal communication bit rate is typically 40 kbit/s. For software or diagnosic data download the bitrate may be increased to 100 kbit/s.

With many integrated features such as slewrate controlled output, loss of ground circuit, bi-level wake-up and sleep mode the TLE 6255 G is optimized for use in most all automotive applications.

The device is based on Siemens power technology SPT[®] which allows bipolar and CMOS control circuitry to be integrated with DMOS power devices on the same monolithic circuitry.

Additional features like short circuit and overtemperature protection, over- and undervoltage lockout, wide operational temperature and supply voltage ranges and an enhanced power SO-package with high thermal capacity and low thermal resistance will enhance the realibility and robustness of the TLE 6255 G.

Mode Control

Two mode control pins (M0: and M1) makes it possible to enter the following modes:

1.) Sleep-Mode (M1 = L; M0 = L):

Device in sleepmode with very low current consumption. Wakeup can be done by the mode control pins or if the device recognizes a high voltage wake-up signal on the bus.

If there is no modification on the mode inputs the device will return to sleep mode after the wakeup signal is removed from the bus.

The transceiver's loss of ground protection circuit connection to ground is not interrupted when in the sleep mode.

2.) High-Speed-Mode (M1 = L; M0 = H):

Device in high speed mode for software or diagnosic data download with bitrates up to 100 Kbit/s. The slewrate control feature is deactivated in this mode.

3.) Wakeup-Call Mode (M1 = H; M0 = L):

In this mode the TLE 6255 G will send a high voltage wake-up message waveform on the bus.

The bus includes a special node wake up capability which allows normal communication to take place among some nodes while leaving the other nodes in an undisturbed sleep state. This is accomplished by controlling the level of the signal voltages such that all nodes must wake up when they receive a higher voltage message signal waveform.

Communication at the lower, normal voltage levels shall not disturb the sleeping nodes ($V_{\text{batt}} > 9 \text{ V}$).

4.) Normal Mode (M1 = H; M0 = H):

In this mode the TLE 6255 G will send a normal voltage message waveform on the bus. Transmission bit rate in normal communication is typically 25 Kbits/sec.

In Normal transmission mode the waveform rise times are controlled.

Waveform trailing edge control is required to assure that high frequency components are minimized at the beginning of the downward voltage slope. The remaining fall time occurs after the bus is inactive with drivers off and is determined by the RC time constant of the total bus load.

Slew-Rate Control

Output voltage and current is controlled by an internal waveshaping circuit; programmable by an external resistor connected from pin RSL to V_{cc} .

Transmitter

The TLE 6255 G contains a high current fully short circuit and overtemperature protected highside-driver (pin CANH). To minimise spectral content the CANH-output waveform in normal and wakeup-mode is slewrate controlled.

Logic low (TxD = L) on pin TxD will command the output stage to switch to dominant high potential; TxD = H to recessive low on the bus.

To avoid a dominant bus, blocked by a faulty TxD input signal, the TLE 6255 G incorporates a timeout feature. In case of TxD = L for longer than the internal fixed timeout the CANH output is switched to recessive state automatically. The timeout is resetted by a H-signal at TxD without a delay.

The loss of an ECU ground may cause the ECU to source current through the various ECU circuits to the communications bus instead of to the vehicle system ground. Therefore the unit-load resistor of any ECU is connected to the LOAD-pin. The TLE 6255 G incorporates a reverse protected switch from LOAD to ground potential. This switch is automatically switched off in a loss of ground state.

Receiver

In normal, high speed and wakeup-mode all logic data on the bus is sensed by the receive comparator and sent to the microcontroller. In sleep mode no data is transfered. The receive threshold is set to the wakeup level. So a wakeup interrupt is sent only in case of a wakeup call on the bus. An internal fixed filter time avoids false triggering. RxD = H indicates a bus recessive state, RxD = L a bus normal or high voltage dominant state.

Pin Definitions and Functions

Pin No.	Symbol	Function
1, 7, 8, 14	GND	Ground; internally connected to leadframe
2	TxD	Transceive-Input ; logic command to transmit on the single wire CAN bus; inverting (L = CANH is dominant); external pull up
3	MO	Mode-Input 0 ; to program the device operating mode; internal pull down
4	M1	Mode-Input 1 ; to program the device operating mode; internal pull down
5	RxD	Receive-Output ; logic data as sensed on the single wire CAN bus; inverting (RxD = L when CANH is dominant); open drain
6	V _{CC}	Supply Voltage; input for logic supply voltage
9	RSL	Slewrate- Program-Input ; an external resistor to $V_{\rm CC}$ on this pin will program the bus output slewrate
10	V _{batt}	Battery Supply Voltage ; external blocking capacitor necessary (see application circuit)
11	LOAD	Unit-Load Resistor Ground Input ; contains the loss of ground low side switch to GND
12	CANH	CAN Bus Input/Output ; single wire bus input and output; short circuit protected
13	N.C.	Not Connected

Pin Configuration

(top view)

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltages

Supply voltage	V _{batt}	- 0.3	40	V	-
CAN bus input/output voltage	V _{CANH}	- 28	28	V	-
Load voltage	V_{LOAD}	- 28	28	V	-
Logic supply voltage	V _{CC}	- 0.3	7	V	-
Logic voltages	V _{logic}	- 0.3	7	V	_
$(V_{RxD}; V_{TxD}; V_{M0}; V_{M1}; V_{RSL})$					

Currents

CAN Bus current	I _{CANH}	_	—	mA	internally limited
Load current	I _{LOAD}	_	_	mA	internally limited

ESD-Protection (Human Body Model; According to MIL STD 833 D)

pin CANH, LOAD, V _{batt}	V_{ESD}	- 4000	4000	V	-
other pins	V_{ESD}	- 2000	2000	V	-

Temperatures

Junction temperature	Tj	- 40	150	°C	-
Junction temperature	Tj	_	175	°C	<i>t</i> < 1000 h
Junction temperature	Tj	_	200	°C	<i>t</i> < 10 h
Storage temperature	T _{stg}	- 50	150	°C	-

Thermal Resistances

Junction to pin	$R_{ m thj-pin}$	-	30	K/W	junction to pin 1, 7, 8, 14
Junction ambient	R _{thj-a}	_	65	K/W	-

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.	-	
Supply voltage	$V_{ m batt}$	$V_{\rm UVOFF}$	28	V	After $V_{\rm batt}$ rising above $V_{\rm UVON}$
Supply voltage increasing	V_{batt}	- 0.3	$V_{\rm UVON}$	V	Outputs in tristate
Supply voltage decreasing	V_{batt}	- 0.3	$V_{\rm UVOFF}$	V	Outputs in tristate
Output current	I _{CANH}	- 0.8	200	mA	-
Logic supply voltage	V _{CC}	V _{POROF}	5.5	V	After $V_{\rm CC}$ rising above $V_{\rm PORON}$
Logic supply voltage; increasing	V _{CC}	- 0.3	V_{PORON}	V	Outputs in tristate
Logic supply voltage; decreasing	V _{CC}	- 0.3	V_{POROF}	V	Outputs in tristate
Junction temperature	T _j	- 40	150	°C	_

Electrical Characteristics

5.5 V < V_{batt} < 16 V; 4.75 V < V_{CC} < 5.25 V; – 40 °C < T_{j} < 150 °C; M0 = M1 = H; R_{UL} = 10.7 k Ω (connected between CANH and LOAD); R_{RSL} = 100 k Ω ; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified

Parameter	Symbol	Limit Values		nit Values		Test Condition
		min.	typ.	max.		

Current Consumption

Supply current at V_{batt} ; sleep mode	I_{batt}	_	20	60	μΑ	M0 = M1 = L; <i>T</i> _j < 125 °C
Supply current at V_{CC} ; sleep mode	I _{CC}	_	20	40	μΑ	M0 = M1 = L; <i>T</i> _j < 125 °C
Supply current at V _{batt}	I _{batt}	_	2.5	6	mA	TxD = L
Supply current at V _{batt}	I _{batt}	_	1	3	mA	TxD = H
Supply current at V _{batt}	I _{batt}	_	4	8	mA	TxD = L; M0 = L
Supply current at V _{batt}	I _{batt}	_	1.5	4.0	mA	TxD = H; M0 = L
Supply current at V _{cc}	I _{CC}	_	2	5	mA	TxD = H or L; M0 = H or L

5.5 V < V_{batt} < 16 V; 4.75 V < V_{CC} < 5.25 V; - 40 °C < T_{j} < 150 °C; M0 = M1 = H; R_{UL} = 10.7 k Ω (connected between CANH and LOAD); R_{RSL} = 100 k Ω ; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Over- and Under Voltage Lockout

UV Switch ON voltage	$V_{\rm UVON}$	_	6	7	V	V_{batt} increasing
UV Switch OFF voltage	$V_{\rm UVOFF}$	4.00	4.75	5.50	V	V_{batt} decreasing
UV ON/OFF Hysteresis	$V_{\rm UVHY}$	_	1.25	—	V	$V_{\rm UVON} - V_{\rm UVOFF}$
OV Switch OFF voltage	V_{OVOFF}	30	34	38	V	V_{batt} increasing
OV Switch ON voltage	$V_{\rm OVON}$	28	32	36	V	$V_{\rm batt}$ decreasing
OV ON/OFF Hysteresis	$V_{\rm OVHY}$	_	2	_	V	$V_{\rm OVOFF} - V_{\rm OVON}$

Power ON/OFF Reset at $V_{\rm CC}$

Power ON Reset voltage	$V_{\rm PORON}$	4.00	4.25	4.50	V	$V_{\rm CC}$ increasing
Power OFF Reset voltage	V_{POROF}	3.50	3.75	4.00	V	$V_{\rm CC}$ decreasing
POR ON/OFF Hysteresis	V_{PORHY}	—	0.5	_	V	$V_{\rm PORON} - V_{\rm POROF}$

Transceive Input TxD

H-input voltage threshold	V_{TxDH}	_	_	$0.7 \times$	V	-
				$V_{\sf CC}$		
L-input voltage threshold	V_{TxDL}	0.3×	_	_	V	-
		$V_{\sf CC}$				
Hysteresis of input voltage	V_{TxDHY}	50	200	500	mV	-
Pull up current	I _{TxD}	5	10	20	μA	$0 V < V_{TxD} < 4 V$
Timeout reaction time	t _{TOR}	5	10	30	ms	-

5.5 V < V_{batt} < 16 V; 4.75 V < V_{CC} < 5.25 V; – 40 °C < T_{j} < 150 °C; M0 = M1 = H; R_{UL} = 10.7 k Ω (connected between CANH and LOAD); R_{RSL} = 100 k Ω ; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Receive Output RxD

Output leakage current	I _{RxDLK}	_	_	10	μA	$V_{\text{RxD}} = 5 \text{ V}$
Output low voltage level	V_{RxDL}	-	0.2	0.4	V	$I_{\text{RxDL}} = 2 \text{ mA}$
Falltime	t _{FRxD}	_	_	200	ns	C_{RxD} = 25 pF to GND; R_{RxD} = 2.4 k Ω

Mode Input M0 and M1

H-input voltage threshold	$V_{ m M0,1H}$	_	_	0.7×	V	-
				V _{CC}		
L-input voltage threshold	$V_{\rm M0,1L}$	0.3 ×	_	_	V	-
		V _{cc}				
Hysteresis of input voltage	$V_{ m M0,1HY}$	50	200	500	mV	-
Pull down current	<i>I</i> _{M0,1}	10	25	100	μA	1 V < V _{M0,1} < 5 V

Mode Change Delaytimes

Normal to high-speed	t _{DNH}	-	-	30	μs	M1 H to L
Normal to wakeup call	t _{DNW}	-	-	30	μs	M0 H to L
Normal to sleep	t _{DNS}	-	-	500	μs	M0 and M1 H to L
Sleep to normal	t _{DSN}	_	_	50	μs	M0 and M1 L to H

Slewrate Input RSL

Output voltage	V_{RSL}	_	3	-	V	I_{RSL} = 20 μ A

5.5 V < V_{batt} < 16 V; 4.75 V < V_{CC} < 5.25 V; – 40 °C < T_{j} < 150 °C; M0 = M1 = H; R_{UL} = 10.7 k Ω (connected between CANH and LOAD); R_{RSL} = 100 k Ω ; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

CANH as Bus Input

Wake up offset threshold	$V_{\mu\nu}$	Vhatt -	_	Vhatt -	V	see Note
		4.30		3.25	-	
Wake up fixed threshold	V_{IHWUF}	6.15	_	8.10	V	see Note
Wakeup dead time	t _{DWU}	5	20	50	μs	_
Wakeup minimal pulse time	t _{wumin}	1	5	10	μs	_
Receive threshold; in normal, high-speed and wakeup mode	V_{IH}	1.8	_	2.2	V	_
Receive hysteresis	V_{RHY}	50	80	200	mV	-
Receive propagation time	t _{CRF}	_	_	1	μs	RxD = H to L; 8 V < V_{batt} < 16 V
Receive propagation time; high speed	t _{CRF}	_	_	0.5	μs	RxD = H to L; M1 = L, 8 V < V_{batt} < 16 V
Receive propagation time	t _{CRR}	_	_	1	μs	RxD = L to H; $R_{RxD} = 2.4 \text{ k}\Omega$ $8 \text{ V} < V_{\text{batt}} < 16 \text{ V}$
Receive propagation time; high speed	t _{CRR}	_	_	0.5	μs	RxD = L to H; M1 = L; $R_{RxD} = 2.4 \text{ k}\Omega$ $8 \text{ V} < V_{\text{batt}} < 16 \text{ V}$
Receive blanking time after CANH H to L transition	t _{CRB}	1.5	3.0	5.0	μs	see diagram 2.5

5.5 V < V_{batt} < 16 V; 4.75 V < V_{CC} < 5.25 V; – 40 °C < T_{j} < 150 °C; M0 = M1 = H; R_{UL} = 10.7 k Ω (connected between CANH and LOAD); R_{RSL} = 100 k Ω ; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

CANH as Bus Output

Offset wakeup output high voltage	V _{онwuo}	V _{batt} – 1.5	_	V_{batt}	V	220 Ω < R_{UL} < 10.7 kΩ, TxD = L; M0 = L; 8 V < V_{batt} < 16 V
Fixed wakeup output high voltage	V_{OHWUF}	9.8	_	V_{batt}	V	220 Ω < R_{UL} < 10.7 kΩ TxD = L; M0 = L
Bus output high voltage; normal and high speed	V _{OH}	3.60	_	4.55	V	100 Ω < $R_{\rm UL}$ < 10.7 kΩ TxD = L; 8 V < $V_{\rm batt}$ < 16 V
Bus output current limit	I _{OLI}	200	250	350	mA	$TxD = L; V_{CANH} = 0 V$
Bus output leakage current	I _{OLK}	- 10	-	200	μA	TxD = H; $T_{\rm j}$ < 125 °C; - 20 V < $V_{\rm CANH}$ < $V_{\rm batt}$
Bus output leakage current (loss of ground)	I _{olk}	- 50	_	200	μA	$\begin{array}{l} 0 \; \mathrm{V} < V_{\mathrm{batt}} < V_{\mathrm{UVOFF}}; \\ - \; 20 \; \mathrm{V} < V_{\mathrm{CANH}} < V_{\mathrm{batt}} \end{array}$
Slew rate rising edge	S _{CANH}	_	1.0	_	V/µs	$30\% < V_{\rm CANH} < 70\%$ 100 Ω < $R_{\rm UL}$ < 10.7 kΩ
Slew rate rising edge; high speed; M1 = L	S _{CANH}	_	8	_	V/µs	$30\% < V_{\rm CANH} < 70\%$ 100 Ω < $R_{\rm UL}$ < 10.7 kΩ
Transmit propagation time	t _{TCF}	_	4.2	6.0	μs	TxD = H to L; 8 V < V_{batt} < 16 V
Transmit propagation time high speed	t _{TCF}	_	0.5	1.0	μs	TxD = H to L; M1 = L; 8 V < V_{batt} < 16 V
Transmit propagation time	t _{TCR}	_	4.2	6.0	μs	TxD = L to H; 8 V < V_{batt} < 16 V
Transmit propagation time high speed	t _{TCR}	_	0.5	1.0	μs	TxD = L to H; M1 = L; 8 V < V_{batt} < 16 V
Bus output transition time; rising edge	t _{tR}	_	2.5	6.0	μs	8 V < V _{batt} < 16 V

5.5 V < V_{batt} < 16 V; 4.75 V < V_{CC} < 5.25 V; – 40 °C < T_{j} < 150 °C; M0 = M1 = H; R_{UL} = 10.7 k Ω (connected between CANH and LOAD); R_{RSL} = 100 k Ω ; all voltages with respect to ground; positive current defined flowing into pin; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Bus output transition time; rising edge; high speed	t _{tR}	_	0.5	1.0	μs	M1 = L; 8 V < V _{batt} < 16 V
Bus output transition time; falling edge	t _{tF}	_	2.5	6.0	μs	8 V < V _{batt} < 16 V
Bus output transition time; falling edge; high speed	t _{tF}	_	0.5	1.0	μs	M1 = L; 8 V < V _{batt} < 16 V

Unit-Load Resistor Ground Input LOAD

Output low voltage level	V_{LOAD}	_	30	100	mV	I_{LOAD} = 2 mA;
						8 V < $V_{\rm batt}$ < 16 V
Output leakage current (loss of ground)	$I_{\rm loadlk}$	- 50	_	50	μA	$0 V < V_{bat} < V_{UVOFF} - 20 V < V_{LOAD} < 20 V$

Thermal Shutdown

Thermal shutdown junction temperature	$T_{\rm jSD}$	150	175	200	°C	-
Thermal switch-on junction temperature	$T_{\rm jSO}$	120	_	170	°C	_
Temperature hysteresis	ΔT	_	30	_	K	-

Note: The device will send a wake up call to the microcontroller at the minimum of $V_{\rm IHWUO}$ or $V_{\rm IHWUF}$

Diagrams

Input/Output-Timing (Pin CANH, TxD and RxD)

Wakeup Deadtime towu

Bus Dominant Blanking Time t_{TOR}

RxD Blanking Time *t*_{CRB}

Application Circuit

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm