V_{S}

I_{D(NOM)}

Smart Quad Low-Side Switch

Features

- Shorted circuit protection
- Overtemperature protection
- Overvoltage protection
- Direct parallel control of the inputs
- Inputs high or low active programmable
- General fault flag
- Very low standby quiescent current
- Compatible with 3V microcontrollers
- Electostatic discharge (ESD) protection

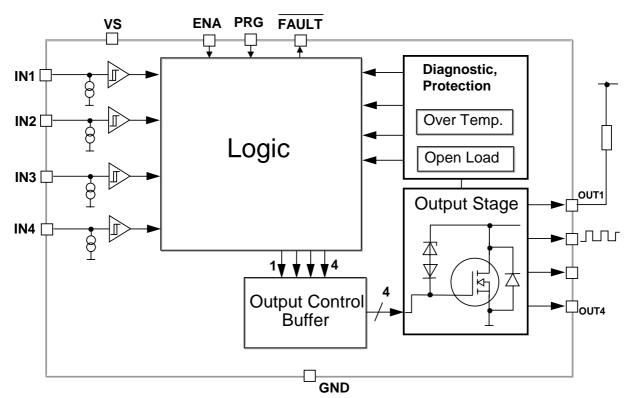
Application

- µC compatible power switch for 12 V applications
- Switch for automotive and industrial systems
- Line, relay or lamp driver

General description

Quad channel Low-Side Switch in Smart Power Technology (SPT) with four separate inputs and four open drain DMOS output stages. The TLE 6225 G is protected by embedded protection functions and designed for automotive and industrial applications, to drive lines, lamps and relays.

Product Summary


Drain source voltage

Output current(each)

On resistance $(T_J = 25 \ ^\circ C)R_{ON(max)}$

Supply voltage

Block Diagram

(individ.) 500 mA

 $V_{DS(AZ)max}$ 60

Ordering Code:

4.5 - 32

2

350

V

V

Ω

mΑ

Q 67006 A9373

SIEMENS

Pin Description

Pin	Symbol	Function		
1	IN1	Input Channel 1		
2	IN2	Input Channel 2		
3	FAULT	General Fault Flag		
4	GND	Ground		
5	GND	Ground		
6	GND	Ground		
7	GND	Ground		
8	VS	Supply Voltage		
9	IN3	Input Channel 3		
10	IN4	Input Channel 4		
11	ENA	Enable for all channels/Standby		
12	OUT4	Power Output channel 4		
13	OUT3	Power Output channel 3		
14	GND	Ground		
15	GND	Ground		
16	GND	Ground		
17	GND	Ground		
18	OUT2	Power Output channel 2		
19	OUT1	Power Output channel 1		
20	PRG	Program (inputs high or low active)		

Pin Configuration (Top view)

IN1	1•	20	PRG
IN2	2	19	OUT1
FAULT	3	18	OUT2
GND	4	17	GND
GND	5	16	GND
GND	6	15	GND
GND	7	14	GND
VS	8	13	OUT3
IN3	9	12	OUT4
IN4	10	11	ENA
			1

P-DSO-20-6

Maximum Ratings for $T_j = -40^{\circ}C$ to $150^{\circ}C$

Parameter	Symbol	Values	Unit
Supply Voltage	Vs	-0.3 +40	V
Continuous Drain Source Voltage (OUT1OUT4)	V _{DS}	45	V
Input Voltage, IN1 - IN4	V _{IN}	- 0.3 + 7	V
Input Voltage (ENA, PRG) Enable and Program Pin	V _{IN}	- 0.3 + 40	V
FAULT Output Voltage	V _{Fault}	- 0.3 + 40	V
Operating Temperature Range	Tj	- 40 + 150	°C
Storage Temperature Range	$T_{ m stg}$	- 55 + 150	
Output Current per Channel	I _{D(lim)}	self limited	Α
Output Clamping Energy	E _{AS}	50	mJ
I _D = 0.2 A			
Power Dissipation (DC) @ $T_A = 25 \text{ °C}$ (on PCB 6 cm ² cooling area)	P _{tot}	2.5	W
Electrostatic Discharge Voltage (Human Body Model)	V _{ESD}	2000	V
according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1 - 1993			
DIN Humidity Category, DIN 40 040		E	
IEC Climatic Category, DIN IEC 68-1		40/150/56	
Thermal Resistance			
junction - pin	$R_{ m thJP}$	23	K/W
junction - ambient @ min. footprint	$R_{ m thJA}$	80	
junction - ambient @ 6 cm ² cooling area	$R_{ m thJA}$	45	

Electrical Characteristics

Parameter and Conditions	Symbol	Values			Unit
V_{S} = 4.5 to 32 V ; T_{j} = - 40 °C to + 150 °C		min	typ	max	
(unless otherwise specified)					
1. Power Supply					
Supply Voltage	Vs	4.5		32	V
Supply Current (ENA = H, Outputs ON) $V_S \le 14V$	I _{S(ON)}		1	2	mA
Supply Current in Standby Mode (ENA = L) $V_S \le 14V$	I _{S(stby)}			1	μA
2. Power Outputs					
$\label{eq:constance} \hline ON \ Resistance \ V_S \geq 6 \ V; \ I_D = 300 \ mA \qquad \qquad T_J = 25^\circ C$	R _{DS(ON)}			2	Ω
$T_{\rm J} = 150^{\circ}{\rm C}$				3.6	
Output Clamping Voltage Output OFF	$V_{\rm DS(AZ)}$	45		60	V
Current Limit	I _{D(lim)}	500	700	1000	mA
Output Leakage Current $V_{ENA} = L$	I _{D(lkg)}			5	μA
Turn-On Time $I_D = 200 \text{ mA}$, resistive load	t _{ON}			10	μs
Turn-Off Time $I_D = 200 \text{ mA}$, resistive load	<i>t</i> OFF			10	μs
3. Digital Inputs (IN1 – IN4, ENA, PRG)					
Input Low Voltage	V _{INL}	- 0.3		1.0	V
Input High Voltage	V _{INH}	2.0			V
Input Voltage Hysteresis	$V_{\rm INHys}$	50	100		mV
Input Pull Down/Up Current (IN1 IN4) $V_{IN} = 5 V$	<i>I</i> _{IN(14)}	20	50	100	μA
PRG, ENA Pull Down Current	I _{IN(PRG,ENA)}	20	50	100	μA
4. Digital Output (FAULT)					
FAULT Output Low VoltageIFAULT = 1.6 mA	V _{FAULTL}			0.4	V
Maximum Output Current	I _{FAULTmax}	1	5	15	mA
5. Diagnostic Functions					
Open Load/Short to Ground Detection Voltage	V _{DS(OL)}	0.4*V _S	$0.5^{*}V_{S}$	$0.6^{*}V_{S}$	V
Output Pull Down Current; V _{BB} = 12V	I _{PD(OL)}	20	50	200	μA
Fault Delay Time; $V_s = 12V$	<i>t</i> _{d(fault)}	50	100	200	μs
Overtemperature Shutdown Threshold	$T_{\rm th(sd)}$	170		200	°C
Hysteresis	$T_{ m hys}$		10		K

Functional Description

The TLE 6225 G is a quad channel low-side switch with four power DMOS stages. The power transistors are protected against short to V_{BB} , overload, overtemperature and against overvoltage by zenerclamp.

The diagnostic logic recognises a fault condition which is indicated by a fault flag.

Circuit Description

Output Stage Control

Each output is independently controlled by an input pin and a common enable line, which enables/disables all four outputs. The parallel inputs are high or low active depending on the PRG pin. If the parallel input pins are not connected (independent of high or low activity) it is guaranteed that the outputs 1 to 4 are switched OFF. ENA - and PRG - pin itself are internally pulled down when they are not connected.

ENA - Enable pin.	ENA = High: ENA = Low (GND):	Active mode. Channels are enabled Sleep mode. Channels are switched off. Less than 10 µA current consumption.
PRG - Program pin.	PRG = High: PRG = Low (GND):	Parallel inputs Channel 1 to 4 are high active Parallel inputs Channel 1 to 4 are low active.

Power Transistors

Each of the four output stages has its own zenerclamp. This causes a voltage limitation at the power transistors when inductive loads are switched off. The outputs are provided with a current limitation set to a minimum of 500 mA.

Each output is protected by embedded protection functions. In the event of an overload or short to supply, the current is internally limited. If this operation leads to an overtemperature condition, a second protection level (about 170 °C) will turn the effected output into a PWM-mode (selective thermal shutdown with restart) to prevent critical chip temperatures. The temperature hysteresis is typically 10K.

Diagnostic

The FAULT pin is an open drain output. The logic status depends on the programming pin PRG.

FAULT - pin.	\overline{FAULT} = High \Rightarrow no fault @ PRG = High
	\overline{FAULT} = Low \Rightarrow no fault @ PRG = Low

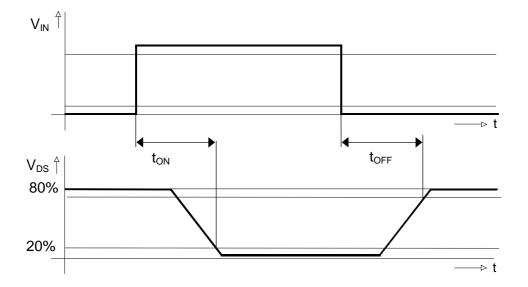
SIEMENS

Diagnostic Table

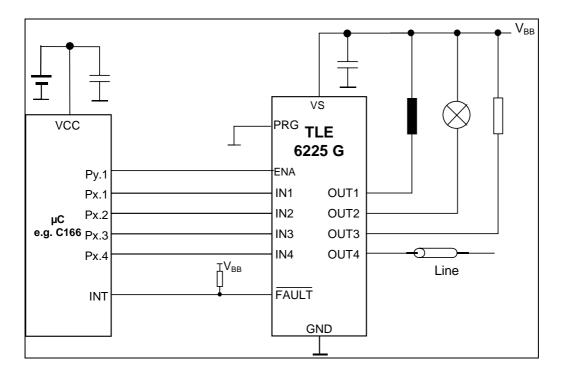
Operating Condition	Enable	Program	Control	Power	Diagnostic
	Input	Input	Input	Output	Output
	ENA	PRG	IN	OUT	FAULT
Standby	L	Х	Х	OFF	Н
Normal function	H	L	L	ON	L
	H	L	H	OFF	L
	H	H	L	OFF	H
	H	H	H	ON	H
Overtemperature	н	L	X	OFF *	H
	т	H	X	OFF *	L
Open load or short to ground	тттт	L L H H		ON OFF OFF ON	L H L H

X = not relevant

*selective thermal shutdown for each channel at overtemperature

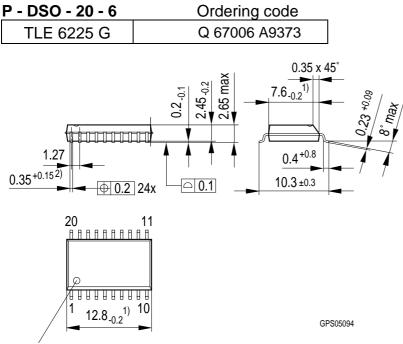

Fault Distinction

Open load/short to ground is recognised in OFF-state. Overtemperature as a result of an overload or short to battery can only arise in ON-state. If there is only one fault at a time, it is possible to distinguish which channel is affected with which fault.


SIEMENS

Timing Diagrams

Power Outputs



Application Circuit

Package and ordering code

all dimensions in mm

Index Marking

- 1) Does not include plastic or metal protrusions of 0.15 max per side
- 2) Does not include dambar protrusion of 0.05 max per side

Published by Siemens AG, Bereich Halbleiter Vetrieb, Werbung, Balanstraße 73, 81541 München

© Siemens AG 1997 All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes a type of component and shall not be considered as warranted characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG.

1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Semiconductor Group

Errata Sheet

The delivered devices are engineering samples marked with ES.

Date Code 848

Current limit: The minimum current limit value of the engineering samples is 300 mA instead of 500 mA .

Control of channel 3 and 4:

The input lines IN3 and IN4 are exchanged, i.e. IN3 controls Output 4 and IN4 controls Output 3.